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Abstract

The problem of determining critical stochastic earthquake excitation models for simple nonlinear systems
under single-point or multi-point nonstationary seismic inputs is considered. The earthquake acceleration
components are obtained by multiplying known deterministic enveloping functions with zero mean
Gaussian stationary random processes with unknown auto-power spectral density functions (for single-
point excitations) and power spectral density matrix (for multi-point excitations). The definition of critical
earthquake input is based on the notion of a performance function. The system is considered to have failed
if the maximum response over a given time interval exceeds specified limits. The critical excitations are
defined as those that minimize the Hasofer–Lind reliability index associated with this performance
function. The computation of this index, in turn, is based on the use of response surface to model the limit
surface near the check point. Here the quantity to be optimally determined is taken to be the unknown
input power spectral density function (for single-point excitations) or the input power spectral density
matrix (for multi-point excitations). The excitations are taken to satisfy constraints on total average energy,
zero crossing rate, lower bounds on entropy rate and other positivity and bounding requirements that are
of mathematical nature. The resulting constrained nonlinear optimization problems are solved using the
sequential quadratic programming method. Illustrative examples for computing random critical excitations
for singly supported and multiply supported oscillators that have cubic force–displacement relations are
provided.
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1. Introduction

Critical earthquake excitations, by definition, depend upon properties of the structure
considered and site soil conditions. The problem of determination of critical earthquake
excitations for linear structures is widely studied; see, the accompanying paper [1] for relevant
references. On the other hand, the problem of determining critical earthquake excitations
including the effects of structural nonlinearities has been studied to a very limited extent in the
existing literature. Given that the treatment of structural nonlinearities constitutes one of the
central themes in earthquake resistant design, it is of significant interest to develop methods for
computing critical earthquake load models for these structures. Early studies in this area of research
are due to Iyengar [2] and Drenick [3]. Iyengar [2] considered inputs having known total energy and
obtained critical excitations for a class of nonlinear systems in terms of an associated linear system. He
also treated the input total energy as a random variable and obtained the worst possible distribution
of the critical response. By linearizing the given nonlinear system, Drenick [3] has obtained critical
excitations in terms of impulse response of linearized equations. Philippacopoulos and Wang [4]
developed critical inelastic response spectra using recorded ground accelerograms as basis functions in
a series representation for the critical seismic excitation. Westermo [5] has defined critical response in
terms of input energy to the system and has found critical excitations for linear, elasto-plastic and
hysteretic single-degree-of-freedom (sdof) systems using calculus of variations. Pirasteh et al. [6] have
computed the critical excitations for inelastic multi-story frame structures under deterministic
earthquake inputs. The response variable for maximization was chosen as the cumulative inelastic
energy dissipation or sum of inter-story drifts. The masters theses by Ravi [7] and Srinivas [8] explored
the use of equivalent linearization in determining critical power spectral density (psd) matrix models
for multiply-supported nonlinear systems under spatially varying random seismic support motions.
More recently, Takewaki [9,10] has developed critical input psd function models for earthquake inputs
to sdof and mdof elastic–plastic systems. This analysis employs the method of statistical linearization
to approximately evaluate the structure response. The variable of optimization in these two studies
has been the sum of the response standard deviations of inter-story drifts normalized to yield drifts.
In the companion paper [1] the present authors have investigated the nature of random critical

excitations for linear systems that are tailored to maximize the probability of failure defined on the
event of highest response over a given duration exceeding specified limits. The formulations presented
therein is not directly applicable to problems of nonlinear systems because of the significant difficulty
involved in determining the extreme value distribution of nonlinear structural response. One alternative
to deal with this difficulty is to adopt statistical linearization to approximate the nonlinear structural
response by equivalent Gaussian responses. Another alternative is to explore if methods of time-variant
structural reliability analysis could be employed to achieve this objective. It is the latter option that the
present study adopts. Specifically, the present study explores the use of response surface modelling in
determining critical random excitations for simple nonlinear oscillators. See, for example, the papers by
Faravelli [11], Bucher and Bourgund [12] and Rajashekhar and Ellingwood [13] for a basic exposition
of the response surface modelling in structural reliability analysis. Attention in the present study is
focussed on doubly supported sdof oscillators with nonlinear force–displacement characteristics. The
supports are taken to undergo earthquake-induced differential motions. The ground accelerations are
modelled as a vector of nonstationary Gaussian random processes with each component obtained as a
product of a specified envelope function and an unknown stationary Gaussian random process with
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zero mean. The psd matrix of the stationary part of the input vector is optimally determined such that a
measure of structural reliability, expressed in terms of the response over a given time interval, being less
than a specified permissible limit, is minimized. In computing this reliability, attention is limited to
performance functions involving single response variables. Furthermore, the input is constrained to
possess specified total average energy, average zero crossing rate and a measure of disorder expressed in
terms of input entropy rate. The present study applies the response surface method as developed by
Bucher and Bourgund [12] to arrive at the measure of reliability expressed in terms of the Hasofer–Lind
reliability index. Illustrative examples on sdof systems with cubic force–displacement characteristics are
included and these examples clearly bring out the influence that the structural nonlinearity has on the
definition of the critical earthquake inputs.
2. Nonlinear sdof system under random support motions

A doubly supported sdof system subject to differential support motions is shown in Fig. 1. Here m is
the oscillator mass; c1; c2 the damping coefficients; k1; k2 the linear spring constants and a1; a2 the
nonlinear spring constants. This system can serve as an idealization for a doubly-supported building
frame or a single span extended pipe or a bridge structure. For the purpose of illustration, we model
the spring stiffness to possess cubic force–displacement characteristics. Accordingly, for a displacement
D; the force develops in the left spring would be of the form k1Dþ a1D3: This type of systems are
believed to serve well as archetypal nonlinear systems suited for the development work such as the one
being reported herein. The equation governing the total displacement xðtÞ can be shown to be given by

m €x þ c1ð _x � _xgÞ þ k1ðx � xgÞ þ a1ðx � xgÞ
3
þ c2ð _x � _ygÞ þ k2ðx � ygÞ þ a2ðx � ygÞ

3
¼ 0.

ð1Þ

Here a dot represents differentiation with respect to time t and, xgðtÞ; ygðtÞ and _xgðtÞ; _ygðtÞ represent
the ground displacements and velocities at the support points A and B, respectively (Fig. 1). The above
equation can be recast in terms of the linear structure natural frequency, o; and damping ratio, z; as
follows:

€x þ 2zo _x þ ðo2 þ 3�1x
2
g þ 3�2y

2
gÞx � 3ð�1xg þ �2ygÞx

2 þ �x3

¼ �1x
3
g þ �2y

3
g þ

o2

k
ðc1 _xg þ c2 _yg þ k1xg þ k2ygÞ,

�1 ¼
a1
m

¼ a1
o2

k
; �2 ¼

a2
m

¼ a2
o2

k
; � ¼ �1 þ �2: ð2Þ
(t)x                           yg

m
A Bc21c

k α1,1 k   2 α, 2
x(t) ....

(t)g

Fig. 1. Example structure considered.
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Thus it follows that the governing equation of motion in this case is not only nonlinear but
also has parametric excitation terms. Furthermore, the external excitations, as well as the parametric
excitation terms, appearing in the above equation, contain squares and cubes of Gaussian random
processes. This would mean that the system receives non-Gaussian inputs both parametrically and
externally.
It may be noted that if the two supports are subject to identical displacements, Eq. (2) assumes

a simpler form given by

m €x þ ðc1 þ c2Þð _x � _xgÞ þ ðk1 þ k2Þðx � xgÞ þ ða1 þ a2Þðx � xgÞ
3
¼ 0. (3)

Thus, with the substitution y ¼ x � xg for the relative displacement, this equation can be
transformed into

€y þ 2Zo _y þ o2y þ ð�1 þ �2Þy
3 ¼ � €xg. (4)

This equation represents the well known Duffing’s oscillator with excitation � €xgðtÞ: It is
important to note that, in contrast to Eq. (2), this equation does not contain parametric excitation
terms, and the excitation is Gaussian, and, therefore, represents a relatively simpler situation. In
the discussion to follow, we present the formulation of critical excitation models with respect to
the more general case of Eq. (2). This formulation can be straightforwardly be modified to dealing
with the simpler situation of xgðtÞ ¼ ygðtÞ (Eq. (4)).
We represent the support motions as €xgðtÞ ¼ exðtÞ €wgðtÞ and €ygðtÞ ¼ eyðtÞ€vgðtÞ:Here exðtÞ and eyðtÞ

are the enveloping functions that are taken to be known and €wgðtÞ and €vgðtÞ are zero mean jointly
stationary Gaussian random processes with an unknown psd matrix SðoÞ: In this study, we
propose to determine SðoÞ such that it maximizes the probability of exceedance of the force in one
of the springs beyond its load carrying capacity R. Herein, we treat R as a random variable with
prescribed probability density function. Mathematically, the problem of determining the input
critical psd matrix can be stated as finding SðoÞ that maximizes Pf ¼ P½R � k1 max0oto1 j½xðtÞ �
xgðtÞ	 þ ð�1=o2Þ½xðtÞ � xgðtÞ	

3jo0	; subject to a set of constraints that are reflective of known
features of earthquake input. As has been done in Part 1 of this paper [1], these constraints are
taken to represent known values of total energy, E0x;E0y; zero crossing rate, nþ0x; n

þ
0y; and lower

limits on entropy rate, DH̄Wx;DH̄Wy: Here, the subscripts x and y denote, respectively, quantities
associated with the left and the right supports. The determination of critical input psd matrix,
according to this definition, requires the ability to evaluate the structure probability of failure, Pf ;
as given above. In this context, it is important to note that methods to evaluate, in an exact
manner, the probability distribution function of the quantity k1 max0oto1 j½xðtÞ � xgðtÞ	 þ

ð�1=o2Þ½xðtÞ � xgðtÞ	
3j are not currently available. To proceed further, we adopt response surface

methods to assess the structure probability of failure [11–13]. To facilitate this, the stationary
components of the support accelerations are represented as

€wgðtÞ ¼
XNf

n¼1

fAn cos Ont þ Bn sin Ontg,

€vgðtÞ ¼
XNf

n¼1

fCn cos Ont þ Dn sinOntg. ð5Þ
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Here fAn;Bn;Cn;Dng
Nf

n¼1 is a set of 4Nf zero mean Gaussian random variables and Nf is the
number of discrete frequencies included in the series representation for €wgðtÞ and €vgðtÞ within
(o0;oc). Since the processes €wgðtÞ and €vgðtÞ are taken to be jointly stationary, it is required
that

hAmAni ¼ hBmBni ¼ s2wndmn; hCmCni ¼ hDmDni ¼ s2vndmn,

hAmBni ¼ hCmDni ¼ 0; 8m; n ¼ 1; 2; . . . ;Nf ð6Þ

and

hAmCni ¼ hBmDni ¼ sACndmn,

hAmDni ¼ �hBmCni ¼ sADndmn; 8m; n ¼ 1; 2; . . . ;Nf . ð7Þ

In the above equations h:i denotes the mathematical expectation operator. It is to be emphasized that,
the conditions given by Eq. (6) imply that the processes €wgðtÞ and €vgðtÞ are individually stationary,
while those of Eq. (7) ensure that €wgðtÞ and €vgðtÞ are jointly stationary. Accordingly, the auto and
cross-covariance functions of these processes can be shown to be given, respectively, by

RwwðtÞ ¼
XNf

n¼1

s2wn cos Ont;RvvðtÞ ¼
XNf

n¼1

s2vn cos Ont,

RwvðtÞ ¼
XNf

n¼1

fsACn cos Ontþ sADn sinOntg: ð8Þ

It follows that RwwðtÞ ¼ Rwwð�tÞ; RvvðtÞ ¼ Rvvð�tÞ and RwvðtÞ ¼ Rvwð�tÞ: The ground velocities and
displacements appearing in Eq. (2) are computed as

_xgðtÞ ¼
XNf

n¼1

Z t

0

exðtÞ½An cosOntþ Bn sin Ont	dt

�
XNf

n¼1

Z 1

0

exðtÞ½An cosOntþ Bn sinOnt	dt,

_ygðtÞ ¼
XNf

n¼1

Z t

0

eyðtÞ½Cn cosOntþ Dn sinOnt	dt

�
XNf

n¼1

Z 1

0

eyðtÞ½Cn cosOntþ Dn sinOnt	dt,

xgðtÞ ¼
XNf

n¼1

Z t

0

exðtÞðt � tÞ½An cosOntþ Bn sinOnt	dt� t

XNf

n¼1

Z 1

0

exðtÞ½An cosOntþ Bn sinOnt	dt,
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ygðtÞ ¼
XNf

n¼1

Z t

0

eyðtÞðt � tÞ½Cn cosOntþ Dn sinOnt	dt� t

XNf

n¼1

Z 1

0

eyðtÞ½Cn cosOntþ Dn sinOnt	dt. ð9Þ

In deriving these expressions, the conditions xgð0Þ ¼ 0; limt!1 _xgðtÞ ! 0; ygð0Þ ¼ 0 and
limt!1 _ygðtÞ ! 0 are employed. To proceed further, we now introduce the performance function

gðXÞ ¼ R � k1 max
0oto1

j½xðtÞ � xgðtÞ	 þ
�1
o2

½xðtÞ � xgðtÞ	
3j (10)

such that the structure failure probability is given by Pf ¼ P½gðXÞo0	: Here X ¼

½R; fAn;Bn;Cn;Dng
Nf

n¼1	
t is the vector of the basic random variables inclusive of load and resistance

characteristics. It is to be noted that in the above equation terms involving xðtÞ � ygðtÞ do not appear
explicitly; it is however, emphasized that xðtÞ still depends upon ygðtÞ in an implicit manner. It must
also be noted that, an expression for gðXÞ in terms of X is available only in an implicit form via the
governing equation of motion. This necessitates the use of methods such as response surface
modelling to approximately evaluate Pf : In the present study we propose to use the response surface
method as developed by Bucher and Bourgund [12]. This procedure leads to a quadratic fit to the limit
surface near the design point and yields a measure of structural reliability defined in terms of the
Hasofer–Lind reliability index. The problem of computing critical earthquake excitations can thus be
stated as finding the variables fs2wn; s

2
vn;sACn;sADng

Nf

n¼1 that minimize the structure reliability index
under the following constraints:

XNf

n¼1

s2wn ¼ E0x;
XNf

n¼1

s2vn ¼ E0y,

XNf

n¼1

s2wnO
2
n ¼ E2x;

XNf

n¼1

s2vnO
2
n ¼ E2y,

s2ACn þ s2ADnos2wn þ s2vn,

s2wn40; s2vn40; n ¼ 1; 2; :::;Nf ,

1

2ðoc � o0Þ

XNf

n¼1

ðOn � On�1Þloge 1:0þ
s2wn

S0ðOn � On�1Þ

� �
XDH̄Wx,

1

2ðoc � o0Þ

XNf

n¼1

ðOn � On�1Þloge 1:0þ
s2vn

S0ðOn � On�1Þ

� �
XDH̄Wy. ð11Þ

It can be shown that the constraints s2ACn þ s2ADnos2wn þ s2vn for n ¼ 1; :::;Nf ensures that the
covariance matrix of the random variables An;Bn;Cn and Dn is positive definite 8n ¼ 1; 2; :::;Nf :
Clearly, the problem of finding the critical input psd matrix constitutes a constrained nonlinear
optimization problem. As in Part 1 of the study [1] we employ the sequential quadratic programming
method to treat this problem.
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3. Determination of critical psd matrix using response surface models

The performance function, as given by Eq. (10), is defined in a space of 4Nf þ 1 random
variables denoted collectively by the vector X: The first step in implementing the response surface
method for reliability computation consists of transforming the basic random variables X into a
vector of standard normal random variables denoted by Y: The essence of the response surface
method consists of replacing the implicit performance function given in Eq. (10) by an
approximating quadratic surface [12]

ḡðYÞ ¼ a þ
XNrv

i¼1

biY i þ
XNrv

i¼1

ciY
2
i . (12)

Here Nrv ¼ 4Nf þ 1 is the number of basic random variables on which the performance function
depends and a; fbig

Nrv

i¼1; fbig
Nrv

i¼1 are the unknown deterministic parameters to be determined. It must
be noted here that the problem of determination of the Hasofer–Lind reliability index bHL itself
constitutes a constrained nonlinear optimization problem. This optimization problem, in turn, is
embedded into the optimization problem associated with the determination of the critical psd
matrix parameters. Consequently, the algorithm proposed in the present study, for computing the
critical input psd matrix, has two optimization routines. The first routine is meant for computing
the critical excitations, while the second subroutine, that computes bHL; is called by the main
routine at each major step of computing the critical input. The steps involved in these calculations
are as follows:
(1)
 Select a failure criterion for the structure, fix R, define mean and variance of the basic
random variables, fmi;s

2
i g

Nrv

i¼1; and make an initial guess for the optimization variables
fs2wn;s

2
vn; sACn; sADng

Nf

n¼1:

(2)
 Define the performance function gðR; fAn;Bn;Cn;Dng

Nf

n¼1Þ as given by Eq. (10).
(3)
 Make an initial guess for the failure point fx�
i0g

Nrv

i¼1; compute the corresponding point in the

standard uncorrelated normal space, fy�
i0g

Nrv

i¼1: Here the transformation Y ¼ TtX0 is used,

where, X 0
i ¼ ðX i � miÞ=si; is the reduced variate and T is an orthogonal transformation

matrix. The details of this transformation are provided in the book by Ang and Tang [14].
(4)
 Call the basic optimization routine that provides new values for fs2wn: s
2
vn;sACn;sADng

Nf

n¼1:

(5)
 Fit a response surface in the uncorrelated standard normal space. Thus the actual implicit

performance function, gðYÞ; is approximated with a closed-form function ḡðYÞ at the failure
point. In the present work, we use a quadratic polynomial function as given in Eq. (12) [12].
The steps of this fitting are summarized as follows:

� Sample Y in Eq. (12) at 2Nrv þ 1 points, that is, at mean, m̄i; and mean �f s̄i of these
random variables. Here f is a constant and m̄i ¼ 0; s̄i ¼ 1 are mean and standard deviation
of Y i; respectively.

� Evaluate the actual performance function, gðYÞ at the 2Nrv þ 1 points. Here the quantity
max0oto1j½xðt;R;An;Bn;Cn;DnÞ � xgðt;An;Bn;Cn;DnÞ	 þ ð�1=o2Þ½xðt;R;An;Bn;Cn;DnÞ �

xgðt;An;Bn;Cn;DnÞ	
3j; n ¼ 1; 2; :::;Nf ; is computed using numerical integration of the

governing equations of motion.
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� Solve the set of 2Nrv þ 1 algebraic equations given by AB ¼ G; to compute the values of
the variables fa; bi; cig

Nrv

i¼1:Here, the matrix A is of size 2Nrv þ 1 by 2Nrv þ 1; the matrices B
and G are of the size 2Nrv þ 1 by 1, and these matrices are given as

A ¼

1 m̄1 m̄2 . . . m̄Nrv
m̄21 m̄22 . . . m̄2Nrv

1 m̄1 þ f s̄1 m̄2 . . . m̄Nrv
ðm̄1 þ f s̄1Þ2 m̄22 . . . m̄2Nrv

1 m̄1 m̄2 þ f s̄2 . . . m̄Nrv
m̄21 ðm̄2 þ f s̄2Þ

2 . . . m̄2Nrv

1 m̄1 m̄2 . . . m̄Nrv
þ f s̄Nrv

m̄21 m̄22 . . . ðm̄Nrv
þ f s̄Nrv

Þ
2

1 m̄1 � f s̄1 m̄2 . . . m̄Nrv
ðm̄1 � f s̄1Þ

2 m̄22 . . . m̄2Nrv

1 m̄1 m̄2 � f s̄2 . . . m̄Nrv
m̄21 ðm̄2 � f s̄2Þ

2 . . . m̄2Nrv

1 m̄1 m̄2 . . . m̄Nrv
� f s̄Nrv

m̄21 m̄22 . . . ðm̄Nrv
� f s̄Nrv

Þ
2

2
66666666666666666666664

3
77777777777777777777775

,

B ¼ ½ab1b2 . . . bNrv
c1c2 . . . cNrv

	t; G ¼ ½g1ðX
0Þg2ðX

0Þg3ðX
0Þ:::g2Nrvþ1

ðX0Þ	t.
ð13Þ
(6)
 Use the explicit limit surface ḡðYÞ to calculate the reliability index, bHL; and design point
fy�i g

Nrv

i¼1: The procedures of the subroutine that is involved in computing bHL; are summarized
as follows:
(a) Using the design point fy�

i g
Nrv

i¼1; compute bHL as the shortest distance from the origin

bHL ¼
ffiffiffiffiffiffiffiffiffiffiffi
y�ty�

p
(14)

and evaluate also the value of the performance function, at the design point ḡðy�Þ:
(b) Compute the partial derivatives qḡ=qY i at the design point, fy�

i g
Nrv

i¼1:
(c) Update the design point and compute the unit vector a at the check point as follows:

y�
jþ1 ¼

1

jrḡðy�j Þj
2
½rḡðy�j Þ

ty�
j � ḡðx�

j Þ	rḡðy�j Þ; ai ¼
qḡ=qY iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNrv

i¼1ðqḡ=qY iÞ
2

q
Yi¼y�

i

��� . (15)

(d) Re-evaluate the reliability index, bHL; using the new updated design point through
Eq. (14).

(e) Check the convergence criteria for the bHL algorithm, jbHLj
� bHLj�1

jpd1 and jgjðYÞjpd2:
Here d1 and d2 are small quantities to be selected. If both the convergence criteria are
satisfied, stop the bHL algorithm. Otherwise, repeat steps (a)–(e) until convergence is
achieved.
(7)
 Update the starting point, fm̄ig
2Nrvþ1
i¼1 to fyMi

g
2Nrvþ1
i¼1 as yMi

¼ m̄i þ ðy�
i � m̄iÞgðm̄iÞðgðm̄iÞ � gðy�i ÞÞ

and re-fit a new response surface using the new updated point.

(8)
 Check convergence of the basic optimization routine, jgjðY Þpd2j; js2wnjþ1

� s2wnj
jpd3; . . . ;

jsADnjþ1
� s2ADnj

jpd3: If convergence is achieved go to next step, if not go to step 4.
Nf N N
(9)
 Store the quantities, fs2wn;s

2
vn; sACn;sADngn¼1; bHL; fx

�
i g

rv

i¼1 and faig
rv

i¼1:
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It is of interest to note that the formulation of critical excitations in terms of optimal reliability
indices, as developed above, leads to the following input-response descriptors:
�
 Critical psd matrix that produces the least bHL that is compatible with a set of specified
constraints.
�
 The reliability index, bHL; associated with the critical input as obtained above.

�
 A notional probability of failure, given by Pf 0 ¼ Fð�bHLÞ; associated with the performance
function considered. Here, Fð�Þ is the Gaussian probability distribution function.
�
 A check point which characterizes a single time history that leads to maximum likelihood of
failure.
�
 A vector fgig
4Nf

i¼1 which is a measure of sensitivity of reliability index with respect to individual
random variables fAi;Bi;Ci;Dig

Nf

i¼1: Since the design point can be expressed as y�
i ¼ �bHLai; it

follows that ai ¼ �qbHL=qy�i : Following Kiureghian and Ke [15] it can be shown that the

sensitivity vector, fgig
4Nf

i¼1 ; is expressible in terms of faig
4Nf

i¼1 as g ¼ ðsJY;XaÞjsJY;Xaj; where, s is

diagonal matrix of mean of the original random variables, X and JY;X is the Jacobian matrix

given by JtY;X ¼ fsTEg�1: Here E2 is the diagonal matrix of eigenvalues involved in the

transformation.

It is believed that the above descriptors are of significant interest in modelling the optimal
earthquake inputs. Finally, we wish to add that the procedure developed herein has the inherent
capability to take into account any uncertainties that may exist in specifying the structure
properties as well as permissible response levels.
4. Numerical results and discussions

4.1. Example 1: nonlinear singly supported sdof system

Herein, we demonstrate the procedures developed in the previous two sections for deriving
critical stochastic excitations for a simple nonlinear sdof system under uniform ground motion.
Thus we consider the steel frame studied in Part 1 of this paper (see Fig. 1). The structure is
assumed to have spring stiffness k1 ¼ k2 ¼ k=2; a1 ¼ a2 ¼ a=2 and damping c1 ¼ c2 ¼ c=2 with
both the support points, A and B are taken to suffer identical ground motion €xgðtÞ: Under these
simplifications, the unknown of the optimization is the psd function of €wgðtÞ and the number of
random variables involved in the reliability calculations reduces to 2Nf þ 1 (R; fAn;Bng

Nf

n¼1). The
present example represents a special case of the formulations developed in the previous two
sections and, therefore, the details are omitted. The structure is taken to have a span length
L ¼ 9:14m; height h ¼ 5:49m and modulus of elasticity E ¼ 2:10� 1011 N=m2: This leads to a
spring stiffness k ¼ 4:67� 105 N=m: The natural frequency of this structure is computed as
2.07Hz and damping ratio, z is taken as 0.03. The load carrying capacity, that is based on the
force in the spring, is modelled as a normal random variable with mean mR ¼ 3:75� 104 N and
standard deviation, sR ¼ 3:75� 103 N: The frame structure is assumed to be located at a firm soil
site and is analyzed under horizontal ground motion €xgðtÞ: As in Part 1 of this paper, it is assumed
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that E0 ¼ 1:45m2=s4 and nþ0 ¼ 1:64=s: This leads to E2 ¼ 153:96m2=s6 which, in turn, implies
that the expected peak ground acceleration is about 0.44g: The frequency bandwidth, (o0;oc) is
taken as (0, 25.00)Hz. The increase of entropy rate, DH̄W ; from a reference white noise of
intensity parameter S0 ¼ 0:02m2=s3; was computed to be 0.63. In the response surface
calculations, a fourth-order Runge–Kutta method is used for numerical integration of the
equation of motion. The parameters d1 and d2 that appear in the computation of the
Hasofer–Lind reliability index algorithm are taken to be d1 ¼ d2 ¼ 0:001 and d3 was taken to be
10�6: The constant f involved in the response surface fitting is taken as 3. This value was found to
give a good match of critical psd function of €wgðtÞ; for the linear structure (�=o2 ¼ 0) and with
eðtÞ ¼ 1; compared with that computed in example 1 of Part 1 of this paper. In fitting the response
surface, the number of iterations to meet the convergence requirements was seen to be less than
10. The main optimization loop was initiated with alternative starting solutions and it was
invariably found in each case that the final optimal solution was identical. The numerical results
are obtained for different values of the nonlinearity parameter �=o2: Table 1 summarizes the
constraints scenarios considered. The results of this example are presented in Figs. 2–4. Fig. 2(a)
shows the critical psd function of €wgðtÞ; for alternative values of �=o2 for case 1. Similar results for
constraints scenario 2 are presented in Fig. 2(b). Fig. 3(a) shows the amplitude spectrum of the
ground acceleration, €xgðtÞ; at the design point, for �=o2 ¼ 0=m2; while, similar results for �=o2 ¼

1:00=m2 are presented in Fig. 3(b). The sensitivity indices, gi; i ¼ 1; 2; :::; 4Nf ; are shown in Fig.
4(a) and (b). From results that are presented for this example, it is observed that the broad feature
of critical psd functions for alternative constraints scenarios resemble the features that have been
already observed for linear systems. Furthermore, as must be expected, with increases in values of
mR; the critical bHL increases and the associated Pf 0 decreases. For example, with �=o2 ¼ 1:00=m2;
bHL was computed to be 2.65, 3.15, 3.57, 3.94 and 4.46 when mR was taken to be 3.00, 3.38, 3.75,
4.13 and 4.50 kN, respectively. Focusing our attention on the influence of structural nonlinearity
on the critical input characteristics, the following observations are made:
(1)
Tab

Nom

Cas

1

2

The results corresponding to the first constraint scenario (case 1) shown in Fig. 2(a), clearly
demonstrate the emergence of a secondary peak in the critical excitation psd function near the
frequency close to three times the linear structure natural frequency. This characteristic is
consistent with behavior of structures having cubic stiffness characteristic that is widely
studied in the existing literature. Referring to Fig. 2(a), it can be observed that with increasing
values of �=o2; the secondary peak in the critical psd function climbs up while peak at the
primary resonance frequency decreases.
le 1

enclature combinations of constraints used

Constraints imposed

e Singly supported sdof system Multi-supported sdof system

ET & nþ0 Ex; nþ0x; Ey; nþ0y; sAC & sAD

ET ; nþ0 & DH̄W Ex; nþ0x; Ey; nþ0y; sAC ; sAD; DH̄Wx & DH̄Wy
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Fig. 2. Example 1: psd of €wgðtÞ: (a) Case 1, (b) case 2.
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Fig. 3. Example 1, case 2: €xgðtÞ at the design point. (a) �=o2 ¼ 0=m2; (b) �=o2 ¼ 1:00=m2:
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(2)
 For the case of constraint scenario 2, where, additional constraint on entropy rate is brought
in, the psd function of the critical excitation does not show the secondary peak at three times
the natural frequency of the linear structure. This points towards a stronger influence that
entropy rate constraint has on the characteristics of the psd of the critical excitation.
Notwithstanding this, it is of interest to observe that the spectrum of excitation at the check
point (Fig. 3(b)), indeed, reveals an additional peak at a frequency equals to three times the
linear structure natural frequency. A similar observation can also be made in the plots of
sensitivity factors (Fig. 4(b)) wherein, gi is shown to display notable fluctuations near the
frequency that is three times the linear structure natural frequency.
(3)
 It is seen that the deterministic input excitation (a time history) at the check point is narrow
band in nature with most of its energy concentrated at the structure natural frequency, see
Fig. 3(a). Upon increasing the nonlinearity term, �=o2; the design input gains amplitudes at
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Fig. 4. Example 1, case 2: sensitivity indices gi; i ¼ 1; 2; . . . ;Nf : (a) �=o2 ¼ 0=m2; (b) �=o2 ¼ 1:00=m2:
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frequencies that are not the structure natural frequency (see Fig. 3(b)). Furthermore, the
maximum displacement responses produced by the critical input compare well with those
computed when the structure is subjected to the deterministic input at the check point. These
values were computed to be 0.071, 0.059, 0.049 and 0.044m from the critical input and to be
0.069, 0.058, 0.047 and 0.043m from the deterministic time history for the nonlinearity
parameter �=o2 taken as 0, 0.30, 0.60 and 1:00=m2; respectively.
(4)
 From the computation of the sensitivity of bHL due to changes in the values of the constraints
and envelope parameters, it is seen that bHL is more sensitive to the entropy rate and the
energy constraints, compared to the zero crossing rate constraint. The reliability index is less
sensitive to the envelope parameters, a1 and a2: For example, for �=o2 ¼ 1:00=m2; the
percentage changes of bHL are computed to be 0.93, 0.42, 3.21, 0.03 and 0.07 due changes of
1% in the parameters ET ; n

þ
0 ; DH̄W ; a1 and a2; respectively.
(5)
 It is observed that the critical bHL increases with increase in strength of the structure
nonlinearity. The results on notional probability of failure corroborate the trends observed in
bHL: For example, for case 2, bHL was computed to be 2.51, 2.97, 3.32 and 3.57, while Pf 0 was
6:0366� 10�3; 1:4890� 10�3; 4:5009� 10�4 and 1:7849� 10�4 for �=o2 taken as 0, 0.30, 0.60
and 1:00=m2; respectively.
(6)
 One of the key assumptions made in the present study is that the minimization of reliability
index implies the maximization of the true failure probability. Given that the true failure
probability is not known exactly, it becomes important to verify that the assumption made in
the study is indeed valid. To achieve this, Monte Carlo simulations of the structure failure
probability, when the system is driven by its critical excitation, have been made using 6000
samples for different values of �=o2: This has involved the generation of an ensemble of
excitation time histories compatible with the critical psd functions predicted by the proposed
procedure. The failure probability for �=o2 ¼ 0, 0.3, 0.6 and 1.0 were estimated to be 9.1432E-
03, 2.7436E-03, 6.7968E-03 and 2.7384E-04. respectively. One can compute notional reliability
indices associated with these ‘‘true’’ failure probabilities and these indices turn out to be 2.36,
2.78, 3.20 and 3.46. These numbers compare reasonably well with the reliability indices
computed using response surface method (viz., 2.51, 2.97, 3.32 and 3.57). This lends credence
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to the expectation that an increase in the true failure probability implies a decrease in the
reliability index.
4.2. Example 2: nonlinear multi-supported sdof system

Here we re-consider the example structure studied in the preceding section with the
modification that the supports A and B (Fig. 1) now suffer differential ground motions. In the
numerical calculations it is assumed that the frequency range for €xgðtÞ and €ygðtÞ is (0–25.00)Hz
and Nf ¼ 20: Therefore, the total number of random variables involved in computing critical
earthquake excitations turns out to be 81. The set of input frequencies fOng

Nf

n¼1 in the series
representations (see Eq. (5)) were chosen such that discrete harmonic components were present at
o; 2o and 3o; where o is the natural frequency of the frame structure. The parameters of the
envelope functions are taken to be ax1 ¼ ay1 ¼ 0:13; ax2 ¼ ay2 ¼ 0:50; and A0x ¼ A0y ¼ 2:17: This
implies a duration of about 30 s for both the accelerations. The quantities that reflect constraints
that are relevant in computing the critical earthquake loads are taken to be E0x ¼ 1:45m2=s4 and
E0y ¼ 1:45m2=s4: This leads to ETx ¼ ETy ¼ 11:40m2=s4: The dominant input frequencies are
taken to be nþ

0x ¼ nþ0y ¼ 1:64=s and thus E2x ¼ E2y ¼ 153:96m2=s6: This, in turn, implies that the
expected peak values of both the accelerations is about 4:35m=s2 (0.44g). The increases of entropy
rate for both ground accelerations from a reference white noise of intensity 0:02m2=s3 were taken
to be DH̄Wx ¼ DH̄Wy ¼ 0:63:
The results of this example are presented in Figs. 5–10. In general, the features of the critical

inputs were found similar to those observed in Example 1. Apart from this, the following
observations are made: For case 1 and for the linear structure (i.e. �=o2 ¼ 0=m2), the critical input
auto psd functions are seen to be resonant with all their power concentrated near the linear
structure natural frequency. Similarly, the critical coherency function has the same characteristic.
Upon inclusion of nonlinearity, it is observed that the auto psd functions gain a secondary peak at
twice the linear structure natural frequency, that indicates that the system is parametrically excited
due to the presence of the nonlinearity. Furthermore, a secondary peak, at a frequency that is
around three times the linear structure natural frequency, is also observed (see Fig. 5). The critical
coherency function, in this case, possesses a secondary peak at twice the linear structure natural
frequency, in addition to, the primary peak at the linear structure natural frequency, and with
zero phase angle (see Fig. 6). These characteristics are also observed in the spectrum of the ground
accelerations at the design point and also the sensitivity factors as can be seen in Figs. 9 and 10.
Upon imposition of the entropy rate constraint (case 2), the critical auto psd functions of the
ground accelerations are seen to possess a secondary peak at twice the linear structure natural
frequency. The parametric excitation effect is also observed in the cross coherency function, which
increases remarkably upon increasing the nonlinearity term, �=o2 (see Fig. 8). Furthermore, the
influence of the structure nonlinearity, can be observed, clearly, in the plots of the sensitivity
factors, fgig

4Nf

i¼1 ; shown in Fig. 10(b), where, these factors show remarkable fluctuations at
frequencies away from linear structure frequency, when nonlinearity is brought in. It is of interest,
to observe here, that the critical phase angle is neither in phase nor out of phase. Finally, it may be
noted that the critical auto-psd functions of €wgðtÞ and €vgðtÞ (Fig. 7) show broadly similar features;
similar observation also holds good for the Fourier amplitude spectra of €xgðtÞ and €ygðtÞ (Fig. 9).
The actual differences that exist between excitations at left and right supports are not discernable
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Fig. 5. Example 2, case 1: critical psd function. (a) €wgðtÞ , (b) €vgðtÞ , �=o2 ¼ 1:00=m2:
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Fig. 6. Example 2, case 1: cross psd function. (a) jgwvðoÞj; (b) fwvðoÞ; �=o
2 ¼ 1:00=m2:
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from these plots. These similarities are to be expected given the symmetry of structure
(k1 ¼ k2; a1 ¼ a2; c1 ¼ c2) and symmetry in excitation characteristics (exðtÞ ¼ eyðtÞ;E0x ¼ E0y;
E2x ¼ E2y;DH̄Wx ¼ DH̄Wy). The mild dissimilarity in these plots is due to the fact that the
optimization variable here involves force in the left spring. It is nevertheless important to note that
the spatial variability in support motions are characterized through the coherence functions
shown in Fig. 8(a) and (b).
5. Conclusions

A new definition for random critical earthquake excitations for nonlinear singly supported or
multiply supported structures has been introduced in this paper. These excitations are tailored to
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Fig. 7. Example 2, case 2 : critical psd function. (a) €wgðtÞ , (b) €vgðtÞ:

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Frequency Hz

|γ w
v(ω

)|

ε/ω2 = 0 m-2

ε/ω2 = 0.30 m-2

ε/ω2 = 0.60 m-2

ε/ω2 = 1.00 m-2

(a)

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Frequency Hz

φ w
v(ω

) r
ad

ε/ω2 = 0 m-2

ε/ω2 = 0.30 m-2

ε/ω2 = 0.60 m-2

ε/ω2 = 1.00 m-2

(b)

Fig. 8. Example 2, case 2: cross psd function. (a) jgwvðoÞj; (b) fwvðoÞ:
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minimize the Hasofer–Lind reliability index with respect to performance functions involving
admissible limits on extreme values of response displacement/internal forces over a specified time
interval. These indices, in turn, are evaluated approximately by employing response surface
modelling. The algorithm proposed in this paper has the capability of accounting for
nonstationarity of the excitations as well as uncertainties in the system parameters. The
excitations are taken to satisfy constraints on total average energy, zero crossing rate, entropy rate
and other positivity and bounding requirements that are of mathematical nature. The proposed
approach offers a new perspective in critical earthquake excitation modelling for nonlinear
structures, especially in relation to the existing models that often employ methods of equivalent
linearization in handling the problem. Furthermore, the formulation of critical excitations in
terms of optimal reliability indices, as reported in this study, leads to a set of input-response
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Fig. 9. Example 2, case 2: inputs at the design point. (a) €xgðtÞ; (b) €ygðtÞ; �=o
2 ¼ 1:00=m2:
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Fig. 10. Example 2, case 2: sensitivity indices for €xgðtÞ: (a) �=o ¼ 0=m2; (b) �=o2 ¼ 1:00=m2:
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descriptors that are of significant importance in modelling optimal earthquake inputs for
nonlinear structures. The illustrative examples that are presented on nonlinear singly supported
and doubly supported oscillators clearly demonstrate the influence that the structural nonlinearity
has on the nature of critical input psd functions.
It is important to note that the proposed method employs first-order reliability methods and,

therefore, it automatically carries with it all the limitations of these methods. Also, in the present
form of its implementation, the method does not take into account the possible existence of
multiple design points. The new formulations developed in the present study on reliability-based
critical excitations have been illustrated with respect to fairly simple structures. The study has
focussed on developing critical excitations associated with single response variables. Further
work, that combines response surface modelling with methods of system reliability analysis, needs
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to be carried out to extend the scope of the present formulation to consider more than one
response variable in characterizing the critical excitations. Here one would aim to maximize the
lower bound on the system probability of failure. Furthermore, the scope of the critical excitation
models can be significantly improved if the nonstationarity in frequency content of earthquake
ground motions can be taken into account. Similarly, the long-range uncertainties associated with
the earthquake phenomenon can be taken into account by treating the constraints used in defining
critical excitations as being random in nature. Also, given the significant interest in earthquake
engineering on controlled inelastic behavior of engineering structures during strong motion
earthquakes, it is of much interest to extend the scope of the critical excitation models to large-
scale engineering structures with hysteretic nonlinearities. This can be achieved by integrating
tools of nonlinear optimization with finite element modelling and response surface methods. In
the treatment of spatially varying earthquake load models (Section 2) the complex-valued cross-
psd functions between the excitation components at different locations plays an important role. In
the published literature there exist several models for these spectra based on the examination of
recorded data and study of seismic wave propagation phenomenon. The development of critical
psd function matrix models can be improved upon by including the known features of cross-psd
functions as suitable constraints. These issues are presently under study by the present authors.
The problems of constrained nonlinear optimization that underlie the study reported in this two-
parts paper have been solved using sequential quadratic programming tools. Generally, these
methods are not guaranteed to give the global optimal solutions. In the present study, this issue
has been examined essentially numerically. In fact, it was generally observed that initiating
numerical optimization steps with different starting guesses lead to the same optimal solutions.
Furthermore, these solutions were considered acceptable since they displayed qualitatively the
features that could be explained in a consistent manner. In this context, the use of alternative
powerful optimization tools such as those based on genetic algorithms, should be of interest. This,
however, requires further work.
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