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Abstract. The problem of time-variant reliability analysis of randomly driven linear/nonlinear vibrating structures is studied. The
excitations are considered to be non-stationary Gaussian processes. The structure properties are modeled as non-Gaussian random
variables. The structural responses are therefore non-Gaussian processes, the distributions of which are not generally available in
an explicit form. The limit state is formulated in terms of the extreme value distribution of the response random process. Developing
these extreme value distributions analytically is not easy, which makes failure probability estimations difficult. An alternative
procedure, based on a newly developed improved response surface method, is used for computing exceedance probabilities. This
involves fitting a global response surface which approximates the limit surface in regions which make significant contributions to
the failure probability. Subsequent Monte Carlo simulations on the fitted response surface yield estimates of failure probabilities.
The method is integrated with professional finite element software which permits reliability analysis of large structures with
complexities that include material and geometric nonlinear behavior. Three numerical examples are presented to demonstrate the
method.
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1. Introduction21

A randomly driven vibrating structure is deemed to be safe if its responses stay below specified thresh-22

olds over a given duration of time, The extreme values of response processes, over a given period of time,23

thus play a decisive role in the evaluation of structural reliability. The theory of asymptotic distribu-24

tions of sequences of independent and identically distributed (i.i.d.) random variables is well developed25

[1–3]. This theory can be used to study the maximum values of random processes over a given period26

of time, by considering the random variable sequence as consisting of the local maxima of random27

variables. Alternatively, one can relate the extreme value of random processes over a given period,28

to the probability distribution of first passage times. For the case of stationary, Gaussian random pro-29

cesses, these two approaches lead to Gumbel models for the extreme responses [4]. In applying these30

formulations, one needs to know the joint probability density function (PDF) of the process and its31

derivative at a given instant. While the determination of this joint PDF for Gaussian random responses32

is straightforward, complexities would arise if the response is non-Gaussian. This might happen if33

the inputs are non-Gaussian, the structure is either nonlinear and/or randomly parametered. Similar34

problems are encountered even for linear deterministic systems under Gaussian inputs, if attention is35

focused on nonlinear functions of displacement response, as in the case of principal stresses or Von36

Mises stresses. When response processes possess Markovian properties, one can use methods based on37

the backward Kolmogorov equation governing the transition PDF, or the generalized Pontriagin–Vitt38
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(GPV) equations governing the moments of the first passage times [5]. These methods are generally 39

applicable to structures with limited degrees of freedom. 40

Few studies on the exceedance probabilities of non-Gaussian random processes have been reported 41

in the literature. A commonly studied non-Gaussian process, the exceedance probabilities of which are 42

often required for estimating structure reliabilities, is the Von Mises stress. Obtained as a nonlinear 43

function of the stress components, which are themselves random processes, Von Mises stress can 44

therefore be viewed as a problem in nonlinear load combinations. Analytical expressions for the mean 45

outcrossing rate of Von Mises stress in linear structures under Gaussian excitations have been developed 46

[6] by invoking outcrossing approximations. Methods have also been studied [7–9] for computing the 47

root-mean-square of Von Mises stress resulting from zero-mean, stationary Gaussian loadings, and for 48

estimating their instantaneous exceedance probabilities. Linearizing techniques have been applied to 49

obtain bounds on the exceedance probabilities of non-Gaussian random processes [10–12]. However, 50

in large structures, where the finite element method is an indispensable tool for handling complexities 51

such as geometric and/or material nonlinearities, structural randomness and non-stationary excitations – 52

it is difficult to apply these methods as the performance function is defined in implicit form. For this 53

class of problems, response surface-based methods provide an alternative computational procedure for 54

estimating the exceedance probability of the response. 55

Response surface-based methods aim to develop approximate functions that are surrogates for long 56

running computer codes [13, 14]. Techniques for constructing response surfaces in reliability problems 57

can be classified in two broad categories. In methods developed from statistical sampling theory, factorial 58

designs and regression analyses are used to fit response surfaces. This approach has been used for 59

studying soil structure interaction problems [15, 16], static nonlinear structures [17, 18] and to obtain 60

statistics of response for nonlinear oscillators [19]. As the design of experiments is centered around 61

the mean and is independent of the limit surface geometry, the fitted response surface may not always 62

conform to the true failure surface, especially when it is at a great distance from the mean. Alternative 63

methods, which, however, bypass some of the mathematical requirements of response surfaces, obtain 64

satisfactory results by incorporating reliability concepts for fitting the response surface in the vicinity of 65

the design point. These methods have been widely reported in the literature for assessing the reliability 66

of a variety of linear/nonlinear, static/dynamic problems [20–27]. It has been shown, however [28], 67

that the failure probability estimates are highly sensitive to the algorithm parameters. Moreover, it is 68

implicitly assumed that the contribution to the failure probability arises only from a single design point. 69

This leads to erroneous estimates when there are multiple design points or multiple regions that make 70

significant contributions to failure probability [29]. 71

Recently, the present authors have been investigating the development of computational tools 72

for time-variant reliability analysis of structures subjected to earthquake loads. These investigations 73

include: 74

1.) Development of multivariate extreme value distributions of vector Gaussian random processes and 75

their application to the problem of time-variant system reliability analysis [30]. This development 76

is based on the application of the theory of multivariate point processes. 77

2.) Development of an improved response surface method that aspires to obtain a global response 78

surface model that takes into account the possible existence of multiple design points and limit 79

surface geometries characterized by multiple regions of comparable importance [31]. Here, an 80

algorithm has been developed which traces the limit surface lying between two hyperspheres of 81

specified radii in the standard normal space. 82

In the present study we extend the scope of the improved response surface method mentioned above, by 83

considering the reliability analysis of nonlinear, randomly parametered dynamical systems, subjected 84

AUTHOR'S PROOFS



UNCORRECTED
PROOF

Improved Response Surface Method for Time-Variant Reliability Analysis 3

to non-stationary Gaussian excitations. The structure to be analyzed is modeled using professional finite85

element (FE) software, such as NISA, and external software that carries out response surface modeling86

and is interfaced with the FE model. The treatment of the problem includes one or more of the following87

complicating features:88

1.) Randomness in structural parameters. Here, it is of interest to note that physical parameters–such89

as Young’s modulus, density and strength characteristics – are strictly positive and require non-90

Gaussian models.91

2.) Possibility of geometric and/or material nonlinear structural behavior.92

3.) Large-scale structural models.93

4.) Response variables that are nonlinear functions of displacement response, such as the Von Mises94

stress.95

5.) Non-stationary random excitations.96

The procedures developed are illustrated through a set of three numerical examples and are validated97

with the help of limited Monte Carlo simulations.98

2. Problem Statement99

A structure under random dynamic loads is considered. The governing equations of motion, when100

discretized using finite elements and expressed in a general form, are given by101

MŸ(t) + CẎ(t) + K[Y(t), Ẏ(t)]Y(t) = F(t). (1)

Here, Y(t), Ẏ(t) and Ÿ(t) are, respectively, the n-dimensional vectors of nodal displacements, velocities102

and accelerations and, M, C and K are, respectively, the global mass, damping and stiffness matrices103

of size n × n. If geometric and/or material nonlinear behavior of the structure is considered, K is a104

nonlinear function of Y(t) and Ẏ(t). F(t) represents the nodal force vector. For support motion problems,105

F(t) = −M1Üg(t), where Üg(t) is the random process denoting support acceleration and 1 is the106

vector of participation factors, consisting of either 0 or 1. F(t) represents a vector of random processes107

characterized by the power spectral density (PSD) matrix SFF(ω). Since the field equations constitute108

a system of nonlinear differential equations, time histories of the structure response are obtained from109

numerical time integration of Equation (1). This requires that the forcing function be expressed in the110

time domain. Thus, for stationary Gaussian random processes, Fi (t) is expressed as a linear sum of111

harmonic functions with random coefficients and is of the form112

Fi (t) =
N∑

k=1

{aik cos(ωk t) + bik sin(ωk t)}. (2)

Here, Fi (t) is the i th element of F(t), N denotes the number of terms used for discretizing SFi Fi (ω), and113

ωk are the discretized frequencies. aik and bik are Gaussian random variables, such that 〈aik 〉 = 〈bik 〉 =114

〈Fi (t)〉 and 〈a2
ik
〉 = 〈b2

ik
〉 = σ 2

ik
, where σ 2

ik
is the area of the kth segment of the discretized PSD SFi Fi (ω).115

For correlated random processes Fi (t) and Fj (t), the correlation is specified through the cross-PSD116

function SFi Fj (ω), which, in turn, is expressed through the covariance of the random variables ak and117

bk . Non-stationary Gaussian random processes can be obtained by multiplying Equation (2) with a118

deterministic envelope function e(t), of the form119

e(t) = A1[exp(−A2t) − exp(−A3t)]. (3)
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Here, the parameters A2 and A3 determine the shape of e(t) and A1 is a normalization factor such that 120

max[e(t)] = 1.0. 121

Let V (t) be the response quantity of interest, which, in its most general form, is written as 122

V (t) = h[Y(t), Ẏ(t), Ÿ(t)]. (4)

Thus, even in linear structures under Gaussian excitations, if h[·] is a nonlinear function, determining 123

the probability distribution of V (t) is not easy, even though the probability distributions of Y(t), Ẏ(t) 124

and Ÿ(t) are known exactly. Examples of such processes are the principal stress components and Von 125

Mises stress. For structures which behave nonlinearly, or when M, C, K are randomly parametered, 126

the task is even more difficult as the distributions of Y(t), Ẏ(t) and Ÿ(t) are themselves not available 127

explicitly. Failure probability is formulated as the complement of probability of V (t) exceeding a 128

specified threshold α in the interval [0, T ], where T is the duration of interest. Mathematically, this is 129

expressed as 130

Pf = 1 − P[V (t) ≤ α; ∀t ∈ (0, T )]. (5)

Here, α could also be random. Introducing the random variable Vm = max
0 ≤ t ≤ T V (t), the time-dependent 131

reliability problem can be rewritten in the time-independent format as 132

Pf = 1 −
∫ ∞

−∞

{∫ α

−∞
pVm

(v) dv

}
pα(a) da, (6)

where, pα(·) is the pdf of α. If the joint PDF of V (t) and V̇ (t) is known, pVm
(v) can be deter- 133

mined from the outcrossing approach, and estimates of Pf can be obtained from Equation (6). 134

However, in most situations, the distribution of V (t) is not available. The problem is then for- 135

mulated in the space spanned by the vector of basic random variables Z = [ZL , ZS, α], which 136

maybe correlated and non-Gaussian. Here, ZL and ZS are, respectively, the vectors of random vari- 137

ables denoting randomness in load and structure properties. The failure probability is expressed 138

as 139

Pf =
∫

g̃(Z) < 0
pZ (z) dz. (7)

Here, the limit surface is represented as g̃(Z) = α − Vm(ZL , ZS) = 0. Obtaining analytical expres- 140

sions for Pf becomes difficult, especially when g̃(Z) is a highly nonlinear function and is implicitly 141

defined. In this study, exceedance probabilities of structural response are obtained from Equation (7) by 142

adopting an improved response surface method. Details of the algorithm used are outlined in the next 143

section. 144

3. Improved Response Surface Method 145

The basic idea here is to trace the limit surface lying between two hyperspheres of specified radii in 146

the standard normal space. The details of this formulation have been discussed in a recent paper by the 147

present authors [31]. Here we provide a brief description of the key ideas. Figure 1 provides a schematic 148

illustration of these steps: (1) Define the performance function, g(X), in the M-dimensional standard 149

normal space X, by transforming the problem from the M-dimensional Z space. (2) Use Bucher and 150
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Figure 1. Schematic description of the proposed method: qi , (i = 1, . . . , 10) are the points identified on the limit surface, q1 and
q2 are multiple design points, q3, q4, q5, q8, q7, q6, q9, q10 are points arranged in decreasing order of importance in evaluating
failure probability.

Bourgund’s algorithm to identify the design point, q1, on g(X) = 0. (3) Compute the Hasofer–Lind151

reliability index, β0, corresponding to q1. (4) Shift the origin O along the ith axis, (i = 1, . . . , M)152

to Oi j such that the ith coordinate of the shifted origin is given by uik = ui0 + (−1) j ( j − 1)d. Here,153

i denotes the shift along the ith axis, j denotes the j th, ( j = 1, . . . , k) shift along axis i and ui0 is154

the ith coordinate of O . The distance d = (β1 − (−β1))/k where β1 = −�−1[10−4�(−β0)] and k155

is the number of shifts along the ith axis. (5) Define the performance function with respect to Oi j .156

Use Bucher and Bourgund’s algorithm to identify the design point qi in the new coordinate system.157

Transform the coordinates of qi to the original standard normal space. (6) Repeat steps (4) and (5)158

by shifting the origin k times along each of the M axes. A total of R = k M + 1 points are thus159

identified, where g(X) ≈ 0. The total number of g(X) evaluations required is (4M + 3)(1 + k M). (7)160

Fit an lth order polynomial through these R points. If cross terms are neglected, the polynomial is of161

the form162

G = a0 +
M∑

i=1

ai Xi +
M∑

i=1

bi X2
i +

M∑
i=1

ci X3
i + ... upto lth order. (8)

Here, the number of unknown coefficients is l M + 1, such that l M + 1 ≤ R. The (l M + 1) × 1163

vector of unknown coefficients, D, is obtained from the equation G = ZD, where, g(X) evaluated at164

the R points constitutes the (R × 1) vector G and Z is an R × (l M + 1) dimensional matrix, given165
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by 166

Z =




1 X1a X2a . . . X2
1a X2

2a . . . Xl
1a Xl

2a . . .

1 X1b X2b . . . X2
1b X2

2b . . . Xl
1b Xl

2b . . .

. . . . . . . . . . . . . . . .

1 X1r X2r . . . X2
1r X2

2r . . . Xl
1r Xl

2r . . .


 . (9)

If cross terms are considered in Equation (8), the number of unknown coefficients increases and Z needs 167

to be adjusted accordingly. A least-square estimate of the unknown coefficients D, is obtained from the 168

equation 169

D̂ = E[D] = (Z
′
Z)−1Z

′
G. (10)

For (Z
′
Z) to be invertible, all rows in Z which are identical (within a given tolerance) need to be 170

eliminated. (8) Perform Monte Carlo simulations on the response surface and estimate Pf from the 171

relative frequency of failures. 172

The points identified by the algorithm lie close to the failure surface. The fitted response surface 173

is thus expected to have a good correspondence to the geometry of the limit surface. This also takes 174

into account the effect of multiple design points and/or regions which make significant contributions to 175

failure. Hence, Monte Carlo simulations on the fitted response surface yield realistic estimates of Pf . 176

The following numerical examples are presented to demonstrate the applicability of the method in 177

time-variant reliability problems. 178

4. Numerical Examples 179

Three examples are presented to illustrate the procedures described in the previous section. The failure 180

estimates have been compared through the following three procedures: (1) Method 1: An estimate of 181

Pf is obtained from the relative frequency of failures obtained from full scale Monte Carlo simulations 182

on the exact performance function. This involves the analysis of an ensemble of response time histories 183

obtained by direct integration of Equation (1), for a set of sample time histories of excitation F(t). The 184

accuracy of the estimate of reliability obtained using this method depends upon the sample size used. 185

Notwithstanding this fact, we take the results from this analysis to be the benchmark against which 186

other approximate procedures can be evaluated. (2) Method 2: An estimate of Pf is obtained from the 187

Hasofer–Lind reliability index, computed by fitting a response surface using Bucher and Bourgund’s 188

algorithm. (3) Method 3: Estimates of Pf are obtained by adopting the improved response surface 189

procedure. 190

4.1. EXAMPLE 1: A SINGLE DEGREE OSCILLATOR WITH BILINEAR STIFFNESS 191

A single-degree-of-freedom oscillator, under random harmonic, non-stationary excitations, is studied. 192

The governing equation of motion is of the form 193

mÿ(t) + cẏ(t) + Fr [y(t)] = F(t), (11)
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where Fr [y(t)] is a nonlinear conservative restoring force developed in the spring, given194

by195

Fr [y(t)] = k1 yt + k2[y(t) − yt ] for y(t) > yt

= k1 y(t) for − yt ≤ y(t) ≤ yt (12)

= −k1 yt + k2[y(t) + yt ] for y(t) < −yt .

Here, yt is a threshold displacement. The random forcing function is expressed as F(t) = e(t)A sin(ωt),196

where e(t) is of the form in Equation (3), A denotes the random amplitude of the harmonic excitation, and197

ω is the random excitation frequency. Consequently, A and ω are random variables. Numerical values of198

the envelope parameters Ai (i = 1, 2, 3) are taken to be 10.8448, 0.35 and 0.80, respectively. The time199

duration of excitation T is 20 s and tpeak = 1.85 s. The randomness in the system is expressed through200

an 8-dimensional vector of random variables X. These variables are listed in Table 1 together with the201

details of the assumed type of distributions. Failure is defined to occur when Fr [y(t)] exceeds a specified202

threshold α within the interval [0, T ]. The performance function is written, as in Equation (5), where203

V (t) represents Fr [y(t)]. Time histories of Fr [y(t)] are obtained by solving the nonlinear differential204

Equation (11) numerically.205

Estimates of the exceedance probabilities computed by methods 1–3 and are illustrated in Figure 2.206
A sample size of 2000 was considered for Monte Carlo simulations in Method 1. The parameters207
considered in Method 3 for fitting the response surface are k = 3, l = 2 and h = 3 and the sample size208
for performing Monte Carlo simulations on the fitted response surface is taken to be 2000. The number209
of g(X) evaluations required in Methods 1–3 are, respectively 2000, 35 and 875. It should be noted210
that the major computational effort required in Method 3 is in fitting the response surface and hence,211
the sample size for Monte Carlo simulations on the fitted response surface is not a restrictive factor in212
terms of CPU usage.213

4.2. EXAMPLE 2: LINEAR STRUCTURE WITH RANDOM PARAMETERS214

A 1.5 m long cantilever beam, under non-stationary random support motion, is studied. The beam cross-215
sectional dimensions are 0.15 × 0.03 m. The finite element method is used for structural analysis. The216
beam is discretized using ten of 4-noded plane stress elements, with each node having two translational217
degrees of freedom. The structure matrices are of dimensions 40 × 40. The first four structure natural218

Table 1. Distributional properties of the random variables in example 1.

Random variable Probability distribution Mean Coefficient of variation

m lognormal 1 × 106 kg 0.03

c lognormal 4.38 × 105 kg·s 0.30

k1 lognormal 30 × 106 N/mm 0.03

k2 lognormal 54 × 106 N/mm 0.05

yt lognormal 0.010 mm 0.05

A Gaussian 1 × 104 mm 0.30

ω lognormal 5 rad/s 0.03

α lognormal 2.0 × 105 − 2.8 × 105 N 0.03
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Figure 2. Exceedance probability estimates for a nonlinear oscillator under non-stationary excitations; example 1.

frequencies are 450, 1202, 1839 and 2278 rad/s, respectively. The PSD of support acceleration, Ü g(t), 219

is taken to be of the form 220

SÜ gÜ g
(ω) = S0

1 + 4η2
g(ω/ωg)2

[1 − (ω/ωg)2]2 + 4η2
g(ω/ωg)2

(13)

where ωg = 1500 rad/s, ηg = 1.2 and ω is the frequency of excitation. It is observed that 221

max[SÜ gÜ g
(ω)] occurs at ω = 1447 rad/s. Non-stationary time histories for support acceleration are 222

generated from Equations (2) and (3), with N = 5. The frequencies at which SÜ gÜ g
(ω) has been 223

discretized are 450, 1202, 1447, 1839 and 2200 rad/s. The parameters Ai (i = 1, 2, 3) in Equation 224

(3) are taken to be 7.1820, 60 and 41, respectively. The peak support acceleration is observed at 225

tpeak = 0.02 s. 226

Failure is defined to occur on initiation of yielding, when the Von Mises stress exceeds the 227

material yield stress, which, for all practical purposes, denotes the limit of linear material be- 228

havior in ductile materials. The performance function is defined in terms of the Von Mises 229

stress developed at the root of the cantilever beam and is of the form given in Equation (5). 230

Here, V (t) is the Von Mises stress, given by V (t) = (σ (t)Aσ (t))0.5, α is the yield stress, 231

the time duration T = 0.04 s, σ (t) = [σxxσyyσzzσxyσyzσxz]t is the nodal stress vector 232
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and233

A =




1 −0.5 −0.5 0 0 0
−0.5 1 −0.5 0 0 0
−0.5 −0.5 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3




. (14)

The structure material is assumed to have mass density 7850 kg/m3, Poisson’s ratio 0.30 and proportional234
damping, assumed to be 5% in the first two modes, is considered. The randomness in Young’s modulus235
(E) and yield stress (α) are expressed as E = E0(1 + ε1 Z1) and α = α0(1 + ε2 Z2), where, E0 and236
α0 respectively, denote the deterministic components of E and α. ε1 and ε2 are small deterministic237
constants, taken to be equal to 0.05. Z1 and Z2 are assumed to be lognormal random variables, such238
that < Z1 � 2.0, < Z2 � 0.1, σZ1 = 1.0 and σZ2 = 0.05, where σzi denotes the standard deviation of239
random variables zi (i = 1, 2). The performance function is thus defined in a 12-dimensional random240
variable space. The constant S0 in Equation (13) is varied from 40 to 80 m2/s3 and the corresponding241
failure probability estimates, computed by Methods 1–3, are shown in Figure 3. A sample size of 3000242
has been considered for Monte Carlo simulations in Method 1. The numerical values of the parameters243
used in Method 3 are k = 6, l = 2, h = 1 and the sample size for Monte Carlo simulations on the244

Figure 3. Exceedance probability estimates for linear random structure under non-stationary support excitations; example 2.
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fitted response surface is taken to be 3000. The number of g(X) evaluations required in Methods 1–3 245

are respectively 3000, 51 and 3723. 246

4.3. EXAMPLE 3: RANDOMLY PARAMETERED BEAM WITH MATERIAL AND GEOMETRIC 247

NONLINEARITY 248

In this example, the time-variant reliability of a support for a fire-fighting water pipeline in a nuclear 249
power plant, is studied under seismic excitations. The support, built up of two channel sections (see 250
Figure 4), is modeled as a cantilever beam. In this figure, F(t) denotes the reaction force transmitted 251
from the piping structure to the pipe support structure. This force itself is obtained by a detailed FE 252
analysis of the piping structure and the details of this calculation have been presented elsewhere [32]. 253
Figure 5 shows the PSD of the stationary component of the force F(t). The fire-fighting water pipeline 254
is considered to be the primary structure under earthquake excitations and the support is assumed to be 255
the secondary structure. Consequently, the pipe is assumed to impart a random force F(t) at the tip of 256
the beam, which is characterized by its PSD SFF(ω); see Figure 5. 257

The reliability of the support against ultimate collapse is studied. For the support to fail, a plastic 258
hinge needs to form at the root of the cantilever beam. Thus, the state of the stress at the root needs to be 259
examined. For a combined state of stress in metals, the octahedral shearing stress τoct, also termed the 260
effective stress and Von Mises stress, is the metric which is generally used for characterizing yielding 261
as well as material hardening [33, 34]. In this problem, the yield surface is assumed to follow the Von 262
Mises yield theory. The material behaves linearly for τoct < σy , where σy denotes the Von Mises yield 263
stress. When τoct > σy , material yielding occurs and it starts behaving elasto-plastically, characterized 264
by a nonlinear stress-strain relationship. A mixed work hardening rule are assumed such that effects of 265
both isotropic and kinematic hardening are considered. Thus, the yield surface undergoes translation as 266
well as expansion, which causes changes in the limits of linear material behavior, characterized by σy . In 267
this study, however, strain-rate effects on work hardening have not been considered. When τoct reaches 268
the ultimate capacity of the material, σu, the material fails, leading to the formation of a plastic hinge. 269

Assumptions based on small deformation theory are relaxed and effects of large deformations are 270
considered in this problem. This introduces geometric nonlinearities in the structure stiffness matrix. 271
The structural analyses is carried out using professionally available finite element software (NISA). 272
The structure is discretized into a 744-noded structure using 360 solid elements, each node having 273
3 degrees of freedom. Time integration, following Newmark’s scheme, has been used to obtain the 274
time history of τoct at the root of the cantilever beam. The field equations are nonlinear differential 275

Figure 4. Schematic diagram of the support for the fire-water system in a nuclear power plant; example 3. All dimensions are
in mm.
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Figure 5. Power spectrum density function for force in example 3; ∗ represents ωk in Equation (2).

equations which require an incremental solution strategy based on iterative methods. In this example,276

the full Newton–Raphson method has been used. For a particular time instant, t , the equilibrium state277

of the system is thus obtained by an iterative procedure. At the end of each iteration, the solution is278

checked for convergence in terms of norms of displacement, the out-of-balance (residual) force vector279

and the increment in internal energy during each iteration, before progressing to the next time instant.280

Convergence tolerances on the displacement norm, residual force and the internal energy norm have all281

been taken to be equal to 0.001.282

The loading is assumed to have a static and a dynamic component. The static component takes into283

account the effect of dead load of the pipe and is equal to 250 N. The dynamic component, arising284

due to earthquake excitations, is assumed to be a zero-mean, non-stationary, Gaussian random process.285

Using Equations (2) and (3), non-stationary time histories for the forcing function have been generated286

from the PSD in Figure 5. The effect of the PSD beyond 100 rad/s has been assumed to be negligible.287

The choice of ωk have been dictated by the peaks observed in Figure 5, denoted by (∗), and have been288

taken to be 14.12, 33.30, 39.21, 49.26 and 88.72 rad/s, respectively. The parameters Ai (i = 1, 2, 3)289

in Equation (3) have been taken to be 10.8448, 0.35 and 0.80, respectively. The period of interest has290

been taken equal to the time duration of the excitation T , which is 20 s. The yield stress σy and the291

ultimate stress σu are considered to be lognormal random variables with the mean, respectively, being292

250 N/mm2 and 300 N/mm2 and coefficients of variation taken to be 0.03. The performance function293

is defined as in Equation (5) where V (t) = τoct and α = σu . Here, X denotes the 12-dimensional vector294

of random variables. The structural material is assumed to have mass density 7850 kg/m3, Young’s295

modulus (E) 2.018 × 105 N/m2 and the work hardening parameter is 1.0866 × 105. C is taken to be296
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Table 2. Exceedance probability estimates for example 3.

Method S0 = 117.07 N2 · s/rad S0 = 351.21 N2 · s/rad

1 0.1100 0.6900

2 0.0515 0.2998

3 0.1324 0.6492

proportional to linear mass and stiffness matrices (without considering geometric nonlinearities), with 297

the mass and stiffness proportional constants being 0.19 and 0.0021, respectively. 298

The numbers of g(X) evaluations required in Methods 2 and 3 are respectively, 51 and 1887. To 299

keep the computational time within reasonable limits, only 100 samples were used while implementing 300

Method 1. The algorithm parameters considered in Method 3 are k = 3, l = 2 and h = 3. The number 301

of samples for Monte Carlo simulations on the fitted response surface is taken to be 2 × 104. Estimates 302

of the failure probabilities computed by Methods 1–3 are provided in Table 2 for S0 = 117.07 and 303

351.21 N2 s/rad, where S0 is the variance of F(t). 304

4.4. DISCUSSION OF NUMERICAL EXAMPLES 305

In all three examples, the failure probability estimates obtained from Method 3 are found to be in 306

fairly good agreement with those from Method 1. This is in contrast to the estimates obtained from 307

Method 2, which have been shown [28, 31] to be highly sensitive to the algorithm parameters, particularly 308

for nonlinear problems. Moreover, the accuracy of the improved response surface Method is found to 309

be better than Method 2, particularly when there are multiple design points and/or regions which have 310

significant contributions to the failure probability, the existence of which cannot be known beforehand. 311

The better accuracy achieved in Method 3, in comparison to Method 2, comes at the cost of more 312

of g(X) evaluations, as can be observed from the three numerical examples. The number of g(X) 313

evaluations required in Method 3 is dictated by the geometry of the limit surface and is independent 314

of Pf to be estimated. This is, however, is in contrast to Method 1, where the required number of 315

g(X) evaluations varies approximately as 10/Pf , and hence increases for lower failure probabilities. 316

It should be noted that the CPU time required in performing Monte Carlo simulations on the fitted 317

response surface in Method 3 is negligible in comparison to the computational effort expended in fitting 318

the response surface, especially when the performance function evaluations require significant computer 319

time. Thus, for low failure probabilities, the improved response surface method can be economical in 320

comparison with full scale Monte Carlo simulations. 321

5. Concluding Remarks 322

Estimates of reliability of structures under random dynamic loads are obtained from the probability 323

of exceedance of response processes over a specified time duration across predefined thresholds. The 324

computation of these exceedance probabilities requires an explicit knowledge of the mean outcrossing 325

rate of the response process which, in turn, requires a knowledge of joint distribution of the response 326

and its derivative. In most structural reliability problems, the response processes are non-Gaussian 327

and their joint PDF and mean outcrossing rates are difficult to determine. In this study, an improved 328

response surface method has been shown to provide an alternative computational procedure for obtain- 329

ing exceedance probabilities. The problem has been formulated in the random variable space, which 330

AUTHOR'S PROOFS



UNCORRECTED
PROOF

Improved Response Surface Method for Time-Variant Reliability Analysis 13

bypasses the need to determine the probability distributions of the structure response processes. The331

method can easily be integrated with professionally available finite element softwares, which allows332

detailed modeling of the structure and loads. Thus, complexities arising out of geometric and material333

nonlinear behavior, randomness in the structural properties, and the non-stationary nature of excitation334

can be handled. The computational effort required in the improved response surface method can be335

economical in comparison to Monte Carlo simulations, when estimates of low failure probabilities are336

desired and when the evaluation of the performance function requires significant computer time.337
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