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Inverse Sensitivity Analysis of Singular Solutions of FRF
matrix in Structural System Identification

S. Venkatesha1, R. Rajender2 and C. S. Manohar3

Abstract: The problem of structural damage detection based on measured fre-

quency response functions of the structure in its damaged and undamaged states

is considered. A novel procedure that is based on inverse sensitivity of the sin-

gular solutions of the system FRF matrix is proposed. The treatment of possibly

ill-conditioned set of equations via regularization scheme and questions on spatial

incompleteness of measurements are considered. The application of the method in

dealing with systems with repeated natural frequencies and (or) packets of closely

spaced modes is demonstrated. The relationship between the proposed method and

the methods based on inverse sensitivity of eigensolutions and frequency response

functions is noted. The numerical examples on a 5-degree of freedom system, a

one span free-free beam and a spatially periodic multi-span beam demonstrate the

efficacy of the proposed method and its superior performance vis-a-vis methods

based on inverse eigensensitivity.

Keywords: Structural system identification; singular value decomposition; reg-

ularization; closely spaced modes; near periodic structures

1 Introduction

Structural characteristics, such as, spatial distribution of mass density, elastic prop-

erties, damping characteristics, boundary conditions and strength characteristics of-

ten undergo changes during the service life of a structure. These changes could be

due to continued exposure of structures to hostile environments or due to episodic

overloading conditions caused due to rare events such as strong motion earth-

quakes, passage of heavy vehicle on a bridge or cyclonic winds. These changes
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to the structural properties could be termed as “damage”. From the point of view

of monitoring the health of the structure, it is of vital importance to detect such

changes to the structural properties either, as and when they occur, or, by deliberate

inspection in the aftermath of overload conditions. One of the means to achieve

this objective has been to analyze the vibration data emanating from the damaged

structure with a view to detect, locate and quantify the structural damages.

Frequency response functions (FRF-s) constitute important descriptors of linear,

time invariant dynamical systems. Among many of their attributes which render

them important, especially in the context of structural system identification (SSI)

and health monitoring (SHM), the main ones are as follows: (a) FRF-s are the pri-

mary quantities that are measured and the procedures for their measurement are

widely studied and standardized (Ewins 2000, McConnel 1995), (b) they encapsu-

late information on system natural frequencies, mode shapes and damping charac-

teristics and procedures for extracting this information from measured FRF-s are

widely available (Maia and Silva 1997), (c) FRF-s are typically obtained by av-

eraging across an ensemble of sample measurements and consequently, the effect

of measurement noise is mitigated to a large extent (Bendat and Piersol 1982), (d)

based on singular value decomposition of the FRF matrix, it is possible to delineate

closely spaced and repeated natural frequencies (Shih et al. 1988, Allemang and

Brown 1998), and (e) FRF-s permit computational prediction of structural perfor-

mance to a wide range of loads that may be difficult to simulate in a laboratory

condition (Meirovich 1984). These virtues make them particularly suited for SSI

and structural damage detection (SDD) based on vibration data. The present study

considers questions related to this area of research. Specifically, we consider the

application of sensitivity of singular solutions of FRF-matrix in problems of SSI

and SDD in systems with closely spaced modes. To highlight the relevance of

this proposition, we briefly review the related literature. A detailed review of the

relevant literature is available in the thesis by Venkatesha (2007).

The paper by Doebling et al., (1998) provides a comprehensive review of methods

to characterize structural damage based on vibration response and this review has

been updated by Sohn et al., (2003). Hseih et al., (2006) examine experimental ap-

proaches based on ambient vibration, forced vibration and free vibration monitor-

ing. Issues related to experimental methods for the purpose of condition assessment

of existing structures have been discussed by Aktan et al., (1997). Salawu (1997)

has assessed the use of changes in natural frequencies to characterize structural

damage. Peeters and Roeck (2001) review system identification methods based on

vibration data emanating from operational loads, such as, those caused due to wind

and vehicular traffic. The book by Friswell and Mottershead (1996) covers the

principles of finite element model updating using vibration data with emphasis on
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methods that use modal data and frequency domain data. The methods for SDD and

SSI based on vibration data could be grouped into the following broad categories:

direct matrix methods, methods based on real and complex valued eigensolutions,

methods based on frequency response functions, method based on anti-resonance

frequencies, and time domain methods (Venkatesha 2007). In the present study we

focus on the methods based on eigensolutions and FRF-s. One of the early stud-

ies that employed changes in natural frequencies to characterize structural damage

has been by Cawley and Adams (1979) and some of the recent studies on this line

include the works of Hearn and Testa (1991), Farhat and Hemez (1993), Lin et

al., (1995), Lee and Jung (1997a,b), Law et al., (1998), Sanayei et al., (1999),

Ge and Liu (2005), and Alvandi and Cremona (2005). The approach here typi-

cally consists of forming the matrix of first order eigen-derivatives with respect to

system parameters of interest and using this matrix to relate the observed changes

in modal characteristics to the structural damage using matrix pseudoinverse the-

ory. Some of the complicating features that need to be addressed here include: the

complex nature of modal characteristics due to presence of damping, possibility

of repeated and (or) closely spaced modes, and simultaneous use of natural fre-

quencies and mode shapes in parameter identification. As has already been noted,

FRF-s are often the primary response characteristics which are measured first and

eigen-characteristics are to be deduced from the measured FRF-s. The difficulties

associated with modal extraction could be avoided if FRF-s are used directly in the

problems of SSI and SDD. This approach has been investigated by Nobari (1991),

Visser (1992), Wang et al., (1997), Ratcliffe (2000), Lee and Kim (2001), Maia

et al., (2003), Cha and Switkes (2002), Park and Park (2003), and Huynh et al.,

(2005). Forth and Staroselsky (2005) have developed a new hybrid surface-integral-

finite-element numerical scheme to model a three-dimensional crack propagating

through a thin, multi-layered coating and have discussed the mechanical issues of

implementing a structural health monitoring system in an aircraft engine environ-

ment. In a recent paper Reddy and Ganguli (2007) have employed Fourier analysis

of mode shapes and have introduced a damage index in terms of vector of Fourier

coefficients. A related inverse problem of estimating applied time dependent forces

on a beam using an iterative regularization scheme has been investigated by Huang

and Shih (2007). Characterization of degradation in composite beams using a wave

based approach that employs wavelet based spectral finite element scheme has been

developed by Tabrez et al., (2007). A demonstration on the application of natural

neighbour Petrov-Galerkin (NNPG) method in design sensitivity analysis in 2D

elasticity is made in the work reported by Kai Wang, et al., (2008). In this investi-

gation, the calculation of derivatives of shape functions with respect to design vari-

ables is avoided but instead the local weak form of governing equation is directly

differentiated with respect to design variables and discretized with NNPG to obtain
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the sensitivities of structural responds. An inverse vibration problem to simul-

taneously estimate the time-dependent damping and stiffness functions has been

addressed by Chein-Shan Liu (2008) and it is shown that the proposed Lie-group

shooting method can be employed to identify viscoelastic property of time-aging

materials.

One of the problems associated with the use of FRF-s for SDD and SSI is that

this method results in relatively larger number of equations (than those obtained,

for instance, in the eigensensitivity method) governing the changes in system pa-

rameters which, subsequently, leads to numerical difficulties in finding the optimal

solution. An alternative approach, which could possibly avoid this difficulty, would

be to employ singular solutions and singular vectors associated with the measured

FRF matrix in the SDD and SSI algorithms. The expectation here is that the singu-

lar solutions afford FRF data reduction and at the same time capture the essential

features of the FRF-s in a succinct manner. In this context it is of interest to note

that the spectra of singular values of measured FRF matrix have been used in the

existing literature as markers of natural frequencies of the system (Shih et al 1988,

Allemang and Brown 1998, Necati et al., 2004). The question of utilizing the sen-

sitivity of singular values and singular vectors in SSI and SDD seem to have been

not addressed in the existing literature. Such an approach is expected to provide

useful tools to study systems with closely spaced modes and repeated natural fre-

quencies. As is well known, structures with repeated natural frequencies, typically

arise in systems which display spatial symmetries. Similarly, systems with closely

spaced modes are encountered in the study of large scale flexible structures (such

as, piping in nuclear reactor structure). Moreover, for structures that possess spatial

periodicity, such as turbine blades, stiffened shells, and multi-span beam and plate

structures, the natural frequencies are known to occur in clusters of closely spaced

modes with each of the clusters lying in pass bands of the system (Brillouin 1958,

Sengupta 1980, Mead 1996). Any occurrence of a disorder in such systems results

in localization of normal modes leading to spatial confinement of vibration energy

(Hodges 1982, Manohar and Ibrahim 1999). We propose in this study to address the

problem of SSI and SDD in systems with repeated modes and (or) closely spaced

modes using changes in singular solutions of FRF matrix as the response feature

for anomaly detection.

2 Singular solutions of FRF matrix and their derivatives

The equilibrium equations governing the dynamics of a N degrees-of-freedom (dof)

linear time invariant system, in time and frequency domains, are respectively given
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by

Mẍ+Cẋ+ Kx = f (t);x(0) = x0; ẋ (0) = ẋ0

[D(ω)]X (ω) = F (ω)
(1)

Here M,K, and C are respectively the N ×N mass, stiffness and damping matrices;

D(ω) = [−ω2M + iωC + K] is the N ×N complex valued dynamic stiffness ma-

trix, x(t) = N × 1 displacement vector, f (t) = N × 1 force vector, X(ω)= Fourier

transform of x(t), F(ω)= Fourier transform of f (t), t = time, ω = frequency, i =

imaginary number and a dot over head represents derivative with respect to time t.

Taking into account the assembling procedure followed in finite element formula-

tion (Petyt 1998), the structural matrices can be represented in the form

K =
Ne

∑
s=1

[A]ts [K]es [A]s C =
Ne

∑
s=1

[A]ts [C]es [A]s (2)

Here the superscript e denotes the element, Ne is the number of finite elements

and [A]s is the nodal connectivity matrix of size NDOF × N where NDOF is the

number of dofs in the sth element. We assume that the measured FRF matrix is a

Nr ×Ns (Nr ≥ Ns,Nr,Ns ≤ N) matrix and this could denote the system receptance,

mobility or accelerance. However, for the purpose of illustration, we assume that

the measured FRF matrix corresponds to the Nr ×Ns receptance matrix α (ω). We

introduce two matrices B and Q as

B(ω) = α (ω)αT (ω) Q(ω) = αT (ω)α (ω) (3)

Here, the superscript T represents the conjugate transpose. Clearly, B and Q are

respectively of sizes Nr × Nr and Ns ×Ns. Furthermore, these matrices are real

valued, symmetric in nature and the two matrices possess identical nonzero eigen-

values. Denoting by U (ω) and V (ω) the Nr ×Nr and Ns×Ns eigenvector matrices

of B and Q respectively, the matrix α (ω) can be decomposed as

α (ω) = U (ω)Σ(ω)V T (ω) (4)

Here Σ(ω) is a Nr ×Ns matrix that has the following structure

Σ(ω) =

[

[Λ]Ns×Ns

[0](Nr−Ns)×Ns

]

Nr×Ns

(5)

where Λ is the diagonal matrix that carries the non-zero eigenvalues of matrices B

and Q. Equation 4 together with 5 constitute the singular value decomposition of
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the FRF matrix α (ω). The notion of a complex mode indicator function (CMIF)

was introduced by Shih et al., (1988) as

CMIF (ω)Ns×Ns
= [Σ(ω)]TNs×Nr

[Σ(ω)]Nr×Ns
(6)

This function serves as a means for identification of model order and also for lo-

cating the natural frequencies. In using this indicator, the CMIF-s are plotted as a

function of frequency ω with natural frequencies indicated by large values of the

first CMIF and double or multiple modes by simultaneously large values of two

or more CMIF values (Ewins 2000). The singular vectors, that is, the columns of

matrices, U (ω) and V (ω), admit physical interpretation as follows: the left singu-

lar vector U1 (ωr) evaluated at the r-th natural frequency ωr, approximates the r-th

mode shape; and, the right singular vector V1 (ωr) represents the approximate force

pattern necessary to generate a response only in the r-th mode. Here it is assumed

that ωr does not repeat. If this assumption is not valid, there will be as many left

vectors and right vectors which correspond to the number of repeated modes. Ap-

pendix A provides a numerical example on a seven dof system in which one of the

natural frequencies repeats six times and demonstrates the use of singular solutions

of FRF matrix in detecting the repetition of the natural frequencies.

As has been already noted, we propose in this study to employ the singular solu-

tions of measured FRF-s to develop algorithms for SSI and SDD. To achieve this,

we first need to obtain the derivatives of the singular solutions with respect to the

system parameters of interest. We consider the eigenvalue problem Qy = λy and,

corresponding to the i-th eigenpair (λi,yi), we obtain the equation Fiyi = 0 with

Fi = Q−λiI where I is the identity matrix. Let {pi}
n
i=1 denote the system param-

eters of interest. From the equation Fiyi = 0 it follows that yT
i (p)Fi (p)yi (p) = 0.

Differentiating this function with respect to p j we get

∂yT
i

∂ p j

Fiyi + yT
i

∂Fi

∂ p j

yi + yT
i Fi

∂yi

∂ p j

= 0 (7)

By noting that Fiyi = 0, it follows that yT
i FT

i = yT
i Fi = 0, leading to

yT
i

∂Fi

∂ p j

yi = 0 (8)

Similarly, by noting that Fi = Q−λiI, we get

yT
i

[

∂Q

∂ p j

−
∂λi

∂ p j

I

]

yi = 0 (9)
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Simplifying this expression we further obtain

∂λi

∂ p j

= yT
i

[

∂Q

∂ p j

]

yi (10)

To obtain derivative of the eigenvectors with respect to p we consider two modes yi

and ys and note that

yT
i ys = δis

yT
i Qys = λiδis (11)

where δis is the Kronecker delta function. Differentiating equation (11 a), with

respect to p j, we get

∂yT
i

∂ p j

ys + yT
i

∂ys

∂ p j

= 0. (12)

Since
∂yT

i

∂ p j
ys and yT

i
∂ys

∂ p j
are scalars, we can write

yT
s

∂yi

∂ p j

+ yT
i

∂ys

∂ p j

= 0. (13)

Similarly, by differentiating equation (11 b), with respect to p j we get

yT
s Q

∂yi

∂ p j

+ yT
i Q

∂ys

∂ p j

=
∂λi

∂ p j

δis − yT
i

∂Q

∂ p j

ys. (14)

Furthermore, by using the conditionsFiyi = 0, we get additional equations

Fi

∂yi

∂ p j

= −
∂Fi

∂ p j

yi

Fs

∂ys

∂ p j

= −
∂Fs

∂ p j

ys

(15)

Thus, equations (13-15) can be combined to get









Fi 0

0 Fs

yT
s yT

i

yT
s Q yT

i Q









{

∂yi

∂δ j

∂yS

∂δ j

}

=











− ∂Fi

∂δ yi

− ∂Fs

∂δ ys

0
∂λi

∂δ j
δis − yT

i
∂Q
∂δ j

ys











(16)
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In deriving the above equation we have considered only the eigenpairs (λi,yi) and

(λs,ys). We could develop equations similar to equation (16) by considering more

than two eigenpairs. Thus, for the case of 3 eigenpairs (λi,yi), (λr,yr) and (λs,ys),
the following equation for eigenvector sensitivity can be derived.





























Fi 0 0

0 Fr 0

0 0 Fs

yT
r yT

i 0

yT
r Q yT

i Q 0

yT
s 0 yT

i

yT
s Q 0 yT

i Q

0 yT
s yT

r

0 yT
s Q yT

r Q











































∂yi

∂ p j

∂yr

∂ p j

∂ys

∂ p j















=





































− ∂Fi

∂ p j
yi

− ∂Fr

∂ p j
yr

− ∂Fs

∂ p j
ys

0
∂λi

∂δ j
δir − yT

i
∂Q
∂δ j

yr

0
∂λi

∂δ j
δis − yT

i
∂Q
∂δ j

ys

0
∂λi

∂δ j
δrs − yT

r
∂Q
∂δ j

ys





































(17)

Similarly, for four eigenpairs with indices i,r,s,k one gets,



























































Fi 0 0 0

0 Fr 0 0

0 0 Fs 0

0 0 0 Fk

yT
r yT

i 0 0

yT
r Q yT

i Q 0 0

yT
s 0 yT

i 0

yT
s Q 0 yT

i Q 0

yT
k 0 0 yT

i

yT
k Q 0 0 yT

i Q

0 yT
s yT

r 0

0 yT
s Q yT

r Q 0

0 yT
k 0 yT

r

0 yT
k Q 0 yT

r Q

0 0 yT
k yT

s

0 0 yT
k Q yT

s Q

















































































∂yi

∂ p j

∂yr

∂ p j

∂ys

∂ p j

∂yk

∂ p j























=





































































− ∂Fi

∂ p j
yi

− ∂Fr

∂ p j
yr

− ∂Fs

∂ p j
ys

− ∂Fk

∂ p j
yk

0
∂λi

∂δ j
δir − yT

i
∂Q
∂δ j

yr

0
∂λi

∂δ j
δis − yT

i
∂Q
∂δ j

ys

0
∂λi

∂δ j
δik − yT

i
∂Q
∂δ j

yk

0
∂λi

∂δ j
δrs − yT

r
∂Q
∂δ j

ys

0
∂λi

∂δ j
δrk − yT

r
∂Q
∂δ j

yk

0
∂λi

∂δ j
δsk − yT

s
∂Q
∂δ j

yk





































































(18)

The sensitivity of eigensolutions of the matrix B can also be derived on similar

lines.
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3 Inverse sensitivity analysis

The derivatives of singular solutions developed in the preceding section are now

used in developing a SDD algorithm. Let Γk(p1, p2, · · · , pn), k = 1,2, · · · ,Nk, de-

note a generic set of dynamic characteristics of the system. This set includes a se-

lection of singular values and elements of singular vectors at a chosen set of driving

frequency points. It is assumed that Γk(p1, p2, · · · , pn), k = 1,2, · · · ,Nk are differ-

entiable with respect to {pi}
n
i=1 to a desired level. Furthermore, let pu = {pui}

n
i=1

represent the system characteristics in its undamaged state. We write pdi = pui +∆i

where ∆i is the change in the ith system parameter due to the occurrence of damage.

Based on these notations and using Taylor’s expansion, we can write,

Γk [pu1 + ∆1, pu2 + ∆2, · · · , pun + ∆n] = Γk[pu1, pu2, · · · , pun]+
n

∑
i=1

∂Γk

∂ pui

∣

∣

∣

∣

p=pu

∆i

+
1

2

n

∑
i=1

n

∑
j=1

∂ 2Γk

∂ pui∂ pu j

∣

∣

∣

∣

p=pu

∆i∆ j + · · ·

(19)

The quantity ∆Γk = Γk{pd1, pd2, · · · , pdn} − Γk{pu1, pu2, · · · , pun} represents the

change in the character Γk due to occurrence of damage and this quantity is ex-

pected to be measured based on experiments conducted on the structure in its dam-

aged and undamaged states. The essence of first order damage detection methods

consist of writing equation (19) as

∆Γk =
n

∑
i=1

∂Γk

∂ pui

∣

∣

∣

∣

p=pu

∆i; k = 1,2, · · · ,Nk (20)

This can be re-written as

{∆Γ}Nk×1 = [S]Nk×n {∆}n×1 (21)

It is emphasized that the matrix [S] is evaluated for the structure in its undamaged

state. Consequently, the damage vector {∆} is obtained as

{∆} = [S]+ {∆Γ} (22)

where + denotes the matrix pseudo-inverse. It may be noted that this determina-

tion of ∆ crucially depends upon the matrix [S] being well conditioned. Often,

this requirement may not be met in applications due to, for example, presence

of measurement noise, and it would become necessary to employ regularization
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techniques to obtain acceptable solutions. To apply the scheme, equation 22 is re-

written as [StS+ ξ I]{∆}= St∆Γ. Here ξ is called the regularization parameter and

it is selected such that the matrix [StS+ ξ I] is not ill-conditioned. Thus, ∆ is now

determined using {∆} = [StS+ ξ I]−1
St∆Γ. This solution can be shown as being

equivalent to finding ∆ such that ||S∆−∆Γ||+ ξ ||∆|| is minimized (Hansen 1994).

The first term here represents the error norm and the second term the smoothness

of the solution. It is clear that ξ cannot be made arbitrarily large, in which case,

the physical characteristic of the original problem would be distorted; on the other

hand, if ξ =0, the solution to the problem is not satisfactory, if not impossible. Thus

in the selection of ξ , a trade-off is involved, and, in implementing the regularization

scheme a ‘L’-curve that represents ||S∆−∆Γ||versus ||∆||is constructed for differ-

ent values of ξ . The value of ξ that corresponds to the knee of this curve is taken as

being optimal. It may also be noted that in equation 20, the Taylor expansion has

been carried out around {pu}, the system parameters in the undamaged state, and

the S matrix in equation 21 is evaluated at this initial guess. The reference value

around which the Taylor expansion is done can be updated once an estimate of ∆

is obtained using equation 22. This leads to an iterative strategy to solve for ∆ as

follows: {∆}k̄+1 = [S]k̄ + {∆Γ}k̄; k̄ = 1,2, · · · ,NT . This iteration could be stopped

based on a suitable convergence criterion based on difference in norms of initial

guess and predicted value of ∆.

4 Illustrative examples

The SDD method outlined in the preceding section is now illustrated using a 5-dof

discrete system, a one span free-free beam and a spatially periodic four span contin-

uous beam. The example on free-free beam includes data from experimental stud-

ies. The range of issues covered include effect of damage on systems with repeated

natural frequencies, effect of spatial incompleteness of measurements, damages in

periodic structures in which natural frequencies occur in clusters and occurrence

of damage herein could lead to normal mode localization. In all the numerical ex-

amples considered, the governing equations for the damage indicator factors have

been solved by incorporating regularization scheme.

4.1 A five degrees-of freedom system

In this example, we consider the 5-dof system shown in figure 1. By adjusting the

parameters of this model we create following three scenarios:

a. the structure in its undamaged state has one of its natural frequencies repeating

twice and the damaged structure possess five distinct natural frequencies,
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b. the structure in its damaged as well as undamaged states has two of its natural

frequencies repeating twice, and

c. the structure in its undamaged state has five distinct natural frequencies while

the damaged structure has one of its natural frequencies repeating twice.

Figure 1: Five-dof system considered in section 5.1.

The SDD algorithm used in this section to tackle these problems employs only the

information on sensitivity of singular values. The system parameters in damaged

state are taken to be related to the corresponding parameters in undamaged state

through the relation mdi = αimui; i = 1,2, · · ·5 and kdi = βikui; i = 1,2, · · ·15. For

the purpose of illustration it is assumed that damping is classical with the damping

parameter for all modes being constant. The occurrence of the damage is taken not

to affect the damping. In each of the examples, a frequency range of 0-30 rad/s

with ∆ω=0.1 rad/s is considered. The spectra of singular values are extracted from

the 5× 5 receptance matrix and all the five singular values are used in SDD. To

facilitate the comparison of the performance of the proposed method (Method I)

we also analyze the problem using inverse sensitivity of system natural frequencies

and mode shapes (Method II) the details of which are available in existing literature

(see, for example, the thesis by Venkatesha 2007).

Case (a): Table 1 summarizes the system parameters in its undamaged state. Here

ω3 = ω4=16.33 rad/s –a fact that could also be ascertained from the spectra of

singular values shown in figure 2. The system is taken to have a modal damping of
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5% in all the modes. The structure in its damaged state is considered with

α1 = 0.91, α2 = 0.91, α3 = 0.91, α4 = 0.91, α5 = 0.91, β1 = 0.95,

β2 = 0.96, β3 = 0.95, β4 = 0.95, β5 = 0.94, β6 = 0.95, β7 = 0.95,

β8 = 0.95, β9 = 0.95, β10 = 0.95, β11 = 0.95, β12 = 0.95, β13 = 0.95,

β14 = 0.95, and β15 = 0.95.

The undamped system natural frequencies and mode shapes now get modified as

ωn =
(

10.2250 15.6729 16.6850 16.7070 23.5337
)

rad/s

Φ =

[0.0280 −0.0192 0.0428 0.0245 −0.0087

0.0279 −0.0186 −0.0000 −0.0496 −0.0088

0.0280 −0.0192 −0.0428 0.0245 −0.0087

0.0281 0.0439 −0.0000 0.0003 −0.0056

0.0281 −0.0050 −0.0000 −0.0002 0.1009].

It may be noted that in the damaged system all the natural frequencies are dis-

tinct. The results of damage detection using inverse sensitivity on singular values

(Method I) are shown in figures 3 and 4. It may be observed that the SDD algorithm

leads to satisfactory estimate of damaged system parameters. The solution to same

problem by using inverse sensitivity of natural frequencies and mode shapes was

also attempted. The algorithm in this case however, did not function satisfactorily:

figure 5 shows a selection of these results which show unacceptable fluctuations

in vales of mass parameters as iterations proceeds. This example provides an in-

stance where the proposed SDD algorithm in this paper performs better than inverse

eigensensitivity method that is available in the existing literature.

Case (b): The undamaged system as in Table 1 and the damaged system is simu-

lated with

α1 = 0.92, α2 = 0.92, α3 = 0.92, α4 = 0.92, α5 = 0.92, β1 = 0.9,

β2 = 0.9, β3 = 0.9, β4 = 0.9, β5 = 0.9, β6 = 0.9, β7 = 0.9,

β8 = 0.9, β9 = 0.9, β10 = 0.9, β11 = 0.9, β12 = 0.9, β13 = 0.9,

β14 = 0.9, and β15 = 0.9.

The undamped eigensolutions for the damaged structure are as follows:

ωn =
(

9.8907 15.1685 16.1515 16.1515 22.8017
)

rad/s
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Figure 2: Example 5.1, Case (a); spectra of singular values of the structure in

undamaged state

Table 1: Model parameters for the system considered in section 5.1 (figure 1).

Mass parameters M

(kg)

m = 100, m1 = m2 = m3 = 3m, m4 = 4m, m5 = m

Stiffness parameters K

(N/m)

k = 10000, k1 = k2 = 3k, k3 = k, k4 = 4k, k5 = k, k6 =
k7 = k8 = k9 = k10 = k11 = k12 = k13 = k14 = k15 = k

Damping parameters

Cd = [2ηnωn] (Ns/m)

Cd1= 2.0000, Cd2= 3.0672, Cd3=3.2660, Cd4=

3.2660, Cd5= 4.6107

Undamped natural fre-

quency ωn (rad/s)

ω1=10.0000, ω2=15.3361, ω3=16.3299,

ω4=16.3299, ω5=23.0536

Mass normalized un-

damped modal matrix

Φ

[0.0267 −0.0181 0.0408 −0.0236 −0.0083

0.0267 −0.0181 −0.0408 −0.0236 −0.0083

0.0267 −0.0181 −0.0000 0.0471 −0.0083

0.0267 0.0419 0.0000 −0.0000 −0.0054

0.0267 −0.0047 −0.0000 0.0000 0.0962]
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Figure 3: Example 5.1, Case (a); results from Method I; detection of changes to

mass parameters; reference values of the parameters are shown in parenthesis.

Φ =

[0.0279 −0.0189 0.0032 0.0490 −0.0087

0.0279 −0.0189 −0.0441 −0.0218 −0.0087

0.0279 −0.0189 0.0409 −0.0273 −0.0087

0.0279 0.0437 0.0000 0.0000 −0.0056

0.0279 −0.0049 −0.0000 0.0000 0.1003].

Here it may be noted that both the damaged and undamaged structures have one of

their natural frequencies repeating twice. Here again it was observed that Method

I performed better than Method II. Figure 6 shows the SDD iterations on the mass

parameter using Method I. Interestingly, results from Method II showed convergent

behavior (Figure 7) but the values to which the SDD algorithm converged to were

unsatisfactory.

Case (c): The undamaged system is now taken have the properties

m1 = 282,m2 = 282,m3 = 282,m4 = 376,m5 = 94 (kg) and
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Figure 4: Example 5.1, Case (a); results from Method I; detection of changes to

stiffness parameters; reference values of the parameters are shown in parenthesis.

k1g = 28500, k2g = 28800, k3g = 28500, k4g = 38000, k5g = 9400,

k12 = 9500, k13 = 9500, k14 = 9500, k15 = 9500, k23 = 9500,

k24 = 9500, k25 = 9500, k34 = 9500, k35 = 9500, k45 = 9500 (N/m)

The natural frequencies and mode shapes of this system are obtained as

ωn =
(

10.0605 15.4207 16.4166 16.4382 23.1551
)

rad/s

Φ =

[0.0276 −0.0189 0.0421 0.0241 −0.0086

0.0274 −0.0183 −0.0000 −0.0488 −0.0086

0.0276 −0.0189 −0.0421 0.0241 −0.0086

0.0276 0.0432 0.0000 0.0003 −0.0056

0.0276 −0.0049 −0.0000 −0.0002 0.0992].
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Figure 5: Example 5.1, Case (a); results from Method II; detection of changes to

mass parameters; reference values of the parameters are shown in parenthesis.

Now we form the damaged system with

m1 = 300, m2 = 300, m3 = 300, m4 = 400, m5 = 100 (kg) and

k1g = 30000, k2g = 30000, k3g = 30000, k4g = 40000, k5g = 10000,

k12 = 10000, k13 = 10000, k14 = 10000, k15 = 10000, k23 = 10000,

k24 = 10000, k25 = 10000, k34 = 10000, k35 = 10000, k45 = 10000 (N/m)

The undamped eigensolutions for this system are obtained as

ωn =
(

10.0000 15.3361 16.3299 16.3299 23.0536
)

rad/s

Φ =

[0.0267 −0.0181 0.0408 −0.0236 −0.0083

0.0267 −0.0181 −0.0408 −0.0236 −0.0083

0.0267 −0.0181 −0.0000 0.0471 −0.0083

0.0267 0.0419 0.0000 −0.0000 −0.0054

0.0267 −0.0047 −0.0000 0.0000 0.0962].
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Figure 6: Example 5.1, Case (b); results from Method I; detection of changes to

mass parameters; reference values of the parameters are shown in parenthesis.

Here it is may be noted that the structure in its undamaged state has five distinct

natural frequencies while the damaged structure has one of its natural frequency re-

peating twice. Here again, it was observed that while Method I performed satisfac-

torily (Figure 8), Method II, on the other hand showed unsatisfactory convergence

behavior (Figure 9).

4.2 A one span free-free beam

A 0.78 m span free-free steel beam as shown in figure 10 is considered in this ex-

ample (figure 10). The beam, in its undamaged state, carries a concentrated mass

M=0.027 kg as shown and the damaged structure is simulated by removing this

mass from the structure. The system FRF-s in this case were simulated syntheti-

cally with (with E=2.0×1011 N/m2, ρ=7528.9 kg/m3) and also measured experi-

mentally in a laboratory using impulse hammer technique. The structure was mod-

eled using 50 numbers of 2-noded Euler-Bernoulli beam elements with 2-dof per

node. For the purpose of damage detection, the beam was divided into five equal

zones with similar elastic and mass properties. The removal of mass, as mentioned
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Figure 7: Example 5.1, Case (b); results from Method II; detection of changes

to mass parameters; the SDD algorithm does not converge to the reference values

shown in parenthesis.

above, results in zone 3 suffering a 6.65% loss of mass. Consequently, the refer-

ence value of the damage indicator factor α3 is 0.9335 and, since no other elements

suffer either loss of mass and/or loss of stiffness, the reference damage indicating

factors for the remaining zones remain as 1.000 for both mass and stiffness pa-

rameters. The size of the FRF matrix used in damage detection in this case was

taken to be 6× 1thereby introducing the issue of spatial incompleteness of mea-

surements into the SDD procedure. In this example, both Methods I and II (as per

the nomenclature of the preceding section) show satisfactory performance. Method

I is implemented using the spectra of one singular value and one left singular vec-

tor. Method II is implemented using sensitivity of first three natural frequencies

and mode shapes. Figure 11 shows a selection of results obtained using Method II

based on synthetic data. The Nyquist plot of one of the FRF of the system before

and after the damage detection using Methods I and II are shown in figure 12. It

may be noted that the damage detection using both Methods I and II are equally

successful and consequently the difference in the predicted FRF-s from the two

methods cannot be delineated in this figure. Damage detection using experimen-
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Figure 8: Example 5.1, Case (c); results from Method I; detection of changes to

stiffness parameters; the reference values of the parameters are shown in the paren-

thesis.

tally measured FRF-s with Method II was possible with about 5% accuracy and

figure 13 shows a comparison of FRF measured on the damaged system with the

corresponding prediction using estimated parameters after damage detection.

4.3 A four span spatially periodic continuous beam

The example structure here is representative of spatially periodic structures and

this class of structures are known to display several unusual dynamic characteris-

tics (Brillouin 1958, Sengupta 1980, Mead 1996). The dynamic response of these

structures is characterized by alternating sequence of frequency bands which pass

or stop traveling waves. The system natural frequencies here occur in clusters

within the pass bands with the number of natural frequencies within each clus-
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Figure 9: Example 5.1, Case (c); results from Method II; detection of changes to

stiffness parameters; the SDD algorithm does not converge to the reference values

shown in parenthesis.

ter being equal to the number of repetitive units in the structure. If any of the

structural properties are modified so as break the spatial periodicity, the resulting

disordered system displays the phenomena of normal mode localization (Hodges

1982, Manohar and Ibrahim 1999). Thus, this class of structures offers interesting

challenges in SSI and SDD. To clarify some of these features, we begin by con-

sidering a harmonically driven one span beam unit as shown in figure 14. Using

transfer matrix formalism, the steady state amplitude of the harmonic bending mo-

ment and rotation at the right end can be shown to be related to the corresponding

quantities at the left end through the relation of the form (Pestel and Leckie 1963)

{

M (ω)
θ (ω)

}

R

= [T (ω)]

{

M (ω)
θ (ω)

}

L

(23)
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Figure 10: Free-free beam in undamaged state considered in example 5.2; A1-A6

indicate accelerometers; F indicates the force applied through impulse hammer; M

is a concentrated mass; damaged structure is created by removal of mass M; all

dimensions are in mm.

Figure 11: Example 5.2; results on damage detection using Method II; damage

indication factors for mass; reference values are indicated in the parenthesis.
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(a)

(b)

Figure 12: Example 5.2; results on damage detection using Method II; (a) System

FRF in damaged and undamaged states; (b) comparison of measured and predicted

FRF-s of the damaged system; note that the damage detection using Methods I and

II are equally successful and the two results overlap.
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Figure 13: Example 5.2; results on damage detection using Method II.

Here T is the 2 × 2, frequency dependent, system transfer matrix. If one con-

siders a periodic structure, with the beam unit in figure 14 as the repeating unit,

clearly, the propagation of a traveling wave in such a system would be governed

by the eigenvalues of the matrix T . These eigenvalues are known to occur in re-

ciprocal pairs. By denoting the eigenvalues as λ1,2 and, introducing the notation

λ1,2 = exp [±(γ + iκ)], we observe that the nature of spatial variation of the waves

depends on the attenuation constant γ . Clearly, for spatial periodic motions to be

possible, it is required that γ (ω) = 0 (here ω is said to belong to the ‘pass’ band)

otherwise the waves would attenuate (here ω will be in the ‘stop’ band). For the

purpose of illustration, we consider a four span continuous beam that is perfectly

periodic (individual span=0.5m, E=2.0E+11 N/m2, area of cross section= 98.84

mm2, density=7483.2 kg/m3). Figure 15 shows the spectrum of the attenuation

constant which clearly depicts the occurrence of alternating sequence of stop and

pass bands. Furthermore, the figure also shows the natural frequencies of the four

span beam and these frequencies are seen to occur in clusters of four with each clus-

ter lying within a pass band. To demonstrate the effect of modifying the structure

which leads to the breaking of periodicity, we consider the density of the material in



CMES Galley Proof Only Please Return in 48 Hours.

P
ro

of

24 Copyright © 2009 Tech Science Press CMES, vol.1088, no.1, pp.1-35, 2009

the second span to be increased by 50%. The resulting changes in natural frequen-

cies of the system are shown in figure 16 in which the spectrum of the attenuation

constant of the perfectly periodic beam is also shown. It may be observed from

the plot that some of the natural frequencies of the disordered beam now lie in the

stop bands of the perfectly periodic beam. The mode shapes associated with these

natural frequencies display spatial attenuation characteristics (figure 17) and the

mode is said to be spatially localized. While this phenomenon has been the subject

of extensive research in structural mechanics literature, it appears that the inverse

problem associated with SSI and SDD as applied to this class of structures has not

received wide attention.

Figure 14: One span beam unit.
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Figure 15: Spectrum of the attenuation constant for a perfectly periodic beam; the

circles show the natural frequencies occurring in clumps within the pass bands.
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Figure 16: Spectrum of the attenuation constant for a perfectly periodic beam; the

circles show the natural frequencies of the disordered beam.

Table 2: Properties of the four span steel beam considered in section 5.3

Total length 2.0 m

Length of each span 0.50 m

Width 24.9590 mm

Thickness 3.9620 mm

Mass density 7483.250 kg/m3

Modulus of elasticity 2.0e11 N/m2

Concentrated mass M 37.550 g

Added mass (m) 8.670 g

Mass A1-A7 8.670 g

Rayleigh’s damping parameters ξms = 10.7117 & ξks = 1.9360E −06

Rotational stiffness at each support

(Nm/rad)

892.5, 811.5, 805.5, 830.5, 913.0

In the present study we consider the four span steel structure shown in figure 18.

This model serves as the first cut physical model for an experimental model that the

authors are currently studying. M denotes a point mass which can be either added
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(a)

(b)

Figure 17: Normal modes of multi-span beam (a) Extended mode of perfectly pe-

riodic structure; (b) localized normal mode of disordered structure.
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Figure 18: Example 5.3; M= a point mass that is introduced to create disorder;

A1-A7: accelerometers; m=dummy mass introduced to retain periodicity of the

structure; Kθ i; i = 1,2, . . . ,5are the rotary springs to correct for imperfect simply

supported end conditions; all dimensions are in mm.
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Figure 19: Example 5.3; detection of changes in mass parameters using inverse

sensitivity of singular solutions; reference values are indicated in the parenthesis.

or removed to create disorder in the system; A1-A7 indicate the accelerometers and

a point mass m is added in the fourth span to ensure that all the spans are identical;

Kθ i; i = 1,2, . . . ,5 denote tensional springs that are introduced to model imperfect

simple support conditions in the experimental fixture. Table 2 summarizes the prop-

erties of the structure. In implementing the identification algorithm, the structure is
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Figure 20: Example 5.3; detection of changes in stiffness parameters using inverse

sensitivity of singular solutions; reference values are indicated in the parenthesis.

modeled using 80 number of 2-noded, Euler-Bernoulli beam elements with 2 dofs

per node. The beam is further dived into four zones and properties within each zone

are taken to be constant. The damping matrix within each of these zones is taken to

be of the Rayleigh type with the matrix being a linear combination of the mass and

stiffness matrices. The mass density, flexural rigidity and proportionality constants

appearing in the damping model in each of the four zones are treated as parameters

to be identified. Additionally, the torsional springs at the supports are also taken to

be parameters to be identified. Thus, in this example we have 21 parameters to be

identified. The structure in its undamaged state is given by the system with M=0

and the in the ‘damaged’ structure the mass M=37.55 g is introduced. We employ

the method based on inverse sensitivity of singular value and the left singular vector

of a 7×1FRF matrix to detect the changes in the 21 parameters of the system. This

FRF matrix is obtained by driving at A4 and measuring response accelerations at

the points A1-A7 (figure 18). Figures 19 and 21 show a selection of results and

these figures illustrate identification of mass and stiffness parameters. The drive

point accelerances of the system in its damaged and damaged states are superposed

in figure 21. The successful performance of the SDD can be evidenced in figure 22

in which the predicted drive point accelerance of the damaged system is observed
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Figure 21: Example 5.3; detection of changes in support stiffness parameters us-

ing inverse sensitivity of singular solutions; reference values are indicated in the

parenthesis.

to match very well with the measured accelerance.

5 Closing remarks

The problem of structural damage detection, location and quantification in linear

time invariant structural dynamical systems has been considered in this study by

using singular solutions of the system FRF matrix as response features for dam-

age characterization. The study assumes that a baseline mathematical model of

the structure in its undamaged state is available. The proposed method is capa-

ble of detecting changes to mass, stiffness and (or) damping characteristics of the

system. For systems with well separated modes, the proposed method conceptually

encompasses in its fold the inverse sensitivity methods based on eigensolutions and

FRF-s. Thus we note the following:

By selecting the frequencies of interest to coincide with the system natural frequen-

cies, and by taking the first singular solution as the response feature of interest, the

present method becomes nearly the same as the method that uses inverse sensitivity
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Figure 22: Example 5.3; Nyquist plot of the drive point accelerance for the structure

in its damaged and undamaged states.
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Figure 23: Example 5.3; Nyquist plot of the drive point accelerance for the structure

in its damaged state and the prediction of the accelerance after damage detection.
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of natural frequencies alone.

In addition to the first singular value as in the item above, if we also include the

first left singular vector as an additional response feature, the procedure becomes

nearly the same as the method that uses inverse sensitivity of natural frequencies

and mode shapes.

If we include all the singular values and singular vectors at all the frequencies, the

method is equivalent to inverse sensitivity method based on FRF-s.

Thus, the method has the inherent ability to selectively include key features of sys-

tem response and permits an increasingly elaborate analysis of measured data with

a view towards structural damage characterization. More importantly, the method is

particularly suited for damage detection in systems with repeated or closely spaced

modes. This has been exemplified in the present study by considering damages to

system with repeated natural frequencies and also spatially periodic structures in

which the natural frequencies occur in packets of closely spaced modes.

References

Aktan A. E., Farhey D. N., Helmicki A. J., Brown D. L., Hunt V. J., Lee K. L.,

Levi A. (1997): Structural identification for condition assessment: Experimental

arts, Journal of Structural Engineering, ASCE, 123(12), 1674-1684.

Alvandi A., Cremona C. (2005): Assessment of vibration-based damage identifi-

cation techniques, Journal of Sound and Vibration, 292(1-2), 179-202.

Allemang R. J., Brown D. L. (1998): A unified matrix polynomial approach to

modal identification, Journal of Sound and Vibration, 211(3), 301-322.

Bendat J. S., Piersol A. G. (1980): Engineering application of correlation and

spectral analysis, John Wiley and Sons, New York.

Brillouin, L. (1958): Wave propagation in periodic structures, Dover, New York.

Cawley P., Adams R. D. (1979): The location of defects in structures from mea-

surements of natural frequencies, Journal of Strain Analysis, 14(2), 49-57.

Cha P. D., Switkes P. (2002): Enforcing structural connectivity to update damped

systems using frequency response, AIAA Journal, 40(6), 1197-1203.

Doebling S. W., Farrar C. R., Prime M. B. (1998): A summary Review of

vibration-based damage identification methods, Shock and Vibration Digest, 30(2),

91-105.

Ewins D. J. (2000): Modal testing: Theory, Practice and Application, Research

studies press limited, Baldock, Hertfordshire.

Farhat C., Hemez F. M. (1993): Updating finite element dynamic models using



CMES Galley Proof Only Please Return in 48 Hours.

P
ro

of

32 Copyright © 2009 Tech Science Press CMES, vol.1088, no.1, pp.1-35, 2009

an element-by-element sensitivity methodology, AIAA Journal, 31(9), 1702-1711.

Friswell M. I., Mottershead J. E. (1996): Finite element model updating in struc-

tural dynamics, Kluwer Academic Publishers, Dordrecht.

Forth S. C., Staroselsky, A. (2005): A Hybrid FEM/BEM Approach for Designing

an Aircraft Engine Structural Health Monitoring, CMES: Computer Modeling in

Engineering and Sciences, 9(3), 287-298.

Ge M., Lui E. M. (2005): Structural damage identification using system dynamic

properties, Computers and Structures, 83, 2185-2196.

Hansen P. C. (1994): Regularization tools: A Matlab package for analysis and

solution of discrete ill-posed problems, Numerical Algorithms, 6, 1–35.

Hearn G., Testa R. B. (1991): Modal analysis for damage detection in structures,

Journal of Structural Engineering, ASCE, 117(10), 3042-3063.

Hodges, C. H. (1982): Confinement of vibration by structural irregularity, Journal

of Sound and Vibration, 82, 411-424.

Hsieh K. H., Halling M. W., Barr P. J. (2006): Overview of vibrational structural

health monitoring with representative case studies, Journal of Bridge Engineering,

ASCE, 11(6), 707-715.

Huang C. H., Shih, C. C. (2007): An inverse problem in estimating simultane-

ously the time dependent applied force and moment of an Euler-Bernoulli beam,

CMES: Computer Modeling in Engineering and Sciences, 21(3), 239-254, 2007.

Huynh D., He J., Tran D. (2005): Damage location vector: A non-destructive

structural damage detection technique, Computers and Structures, 83, 2353-2367.

Law S. S., Shi Z. Y., Zhang L. M. (1998): Structural damage detection from

incomplete and noisy modal test data, Journal of Engineering Mechanics, ASCE,

124(11), 1280-1288.

Lee I. W., Jung G. H. 1997a, An efficient algebraic method for the computation of

natural frequency and mode shape sensitivities- part I: Distinct natural frequencies,

Computers and Structures, 62(3), 429-435.

Lee I. W., Jung G. H. 1997b, An efficient algebraic method for the computation of

natural frequency and mode shape sensitivities- part II: Multiple natural frequen-

cies, Computers and Structures, 62(3), 437-443.

Lee J. H., Kim J. (2001): Identification of damping matrices from measured fre-

quency response functions, Journal of Sound and Vibration, 240(3), 545-565.

Lin R. M., Lim M. K., Du H. (1995): Improved inverse eigensensitivity method

for structural analytical model updating, Transactions of the ASME, Journal of Vi-

bration and Acoustics, 117, 192-198.



CMES Galley Proof Only Please Return in 48 Hours.

P
ro

of

Inverse Sensitivity Analysis 33

Liu, C. S. (2008): A Lie-Group Shooting Method for Simultaneously Estimating

the Time-Dependent Damping and Stiffness Coefficients, CMES: Computer Mod-

eling in Engineering and Sciences, 27(3), 137-150.

Manohar C. S., Ibrahim, R. A. (1999): Progress in structural dynamics with

stochastic parameter variations 1987-1998, Applied Mechanics Reviews, 52(5), 177-

197.

Maia N. M. M., Silva J. M. M. (1997): Theoretical and experimental modal anal-

ysis, Research Studies Press Limited, Taunton, Somerset, England.

Maia N. M. M., Silva J. M. M., Almas E. A. M. (2003): Damage detection in

structures: From mode shape to frequency response function methods, Mechanical

Systems and Signal Processing, 17(3), 489-498.

McConnel (1995): Vibration testing: Theory and practice, John Wiley, New York.

Mead D. J. (1996): Wave propagation in continuous periodic structures: research

contributions from Southampton, 1964-1995, Journal of Sound and Vibration, 190(3),

495-524.

Meirovich L. (1984): Elements of vibration analysis, McGraw Hill, New York

Necati C. F., Brown, D. L., Aktan, E. (2004): Parameter estimation for multiple-

input multiple-output modal analysis of large structures, Journal of Engineering

Mechanics, ASCE, 130(8), 921-930.

Nobari A. S. (1991): Identification of the dynamic characteristics of structural

joints, PhD thesis, Imperial College of Science, Technology and Medicine, Univer-

sity of London.

Park N. G. Park Y. S. (2003): Damage detection using spatially incomplete fre-

quency response functions, Mechanical Systems and Signal Processing, 17(3), 519-

532.

Peeters B., Roeck G. D. (2001): Stochastic system identification for operational

modal analysis: A review, Transactions of the ASME, Journal of Dynamic Systems,

Measurement and Control, 123, 659-667.

Pestel E. C., Leckie, F. A. (1963): Matrix methods in elastomechanics, McGraw-

Hill, New York.

Petyt M. (1998): Introduction to finite element vibration analysis, Cambridge Uni-

versity Press.

Ratcliffe C. P. (2000): A frequency and curvature based experimental method for

locating damage in structures, Transactions of the ASME, Journal of Vibration and

Acoustics, 122, 324-329.

Reddy K. V., Ganguli, R. (2007): Fourier analysis of mode shapes of damaged



CMES Galley Proof Only Please Return in 48 Hours.

P
ro

of

34 Copyright © 2009 Tech Science Press CMES, vol.1088, no.1, pp.1-35, 2009

beams, CMC: Computers, Materials and Continua, 5(2), 79-98.

Salawu S. (1997): Detection of structural damage through changes in frequency:

A review, Engineering Structures, 19(9), 718-723.

Sanayei M., McClain A. S., Fascetti S. W., Santini E. M. (1999): Parameter

estimation incorporating modal data and boundary conditions, Journal of Structural

Engineering, ASCE, 125(9), 1048-1055.

Sengupta G. (1980): Vibration of periodic structures, The Shock and Vibration

Digest, 12(3), 17-29.

Shih C. Y., Tsuei Y. G., Allemang R. J., Brown D. L. (1988): Complex mode in-

dication function and its applications to spatial domain parameter estimation, Me-

chanical Systems and Signal Processing, 2(4), 367-377.

Sohn H., Farrar C. R., Hemez F. M., Czarnecki J. J., Shunk D. D., Stinemates

D. W., Nadler B. R. (2003): A review of structural health monitoring literature:

1996-2001, Los Alamos National Laboratory Report, LA-13976-MS.

Strang G. (1980): Linear Algebra and its Applications, Academic Press, New

York.

Tabrez S., Mitra M., Gopalakrishnan S. (2007): Modeling of degraded compos-

ite beam due to moisture absorption for wave based detection, CMES: Computer

Modeling in Engineering and Sciences, 22(1), 77-90.

Venkatesha S. (2007): Inverse sensitivity methods in linear structural damage de-

tection using vibration data, MSc (Engg.) Thesis, Department of Civil Engineer-

ing, Indian Institute of Science, Bangalore, India.

Visser W. Y. (1992): Updating structural dynamic models using frequency re-

sponse data, PhD thesis, Imperial College of Science, Technology and Medicine,

University of London.

Wang Z., Lin R. M., Lim M. K. (1997): Structural damage detection using mea-

sured FRF data, Computer Methods in Applied Mechanics and Engineering, 147,

187-197.

Wang, K., Zhou S., Nie Z., Kong S. (2008): Natural neighbor Petrov-Galerkin

Method for Shape Design Sensitivity Analysis, CMES: Computer Modeling in En-

gineering and Sciences, 26(2), 107-122.

Appendix A

Here we consider a 7-dof system with the 7× 7 mass and stiffness matrices given

respectively by Mii = 100 kg, i = 1,2, · · · ,7; Mi j = 0 ∀i 6= j; i, j = 1,2, · · · ,7 and

Kii = 7000N/m; i = 1,2, · · · ,7; Ki j = −10000N/m ∀i 6= j; i, j = 1,2, · · · ,7. The

undamped natural frequencies for the system are obtained as ω1=10 rad/s and
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ω2 = ω3 = · · · = ω7= 28.28 rad/s. Figure A.1 shows a few of the system FRF-s

obtained under the assumption that the system is viscously damped with damp-

ing ratio in all the modes being equal to 0.02. Given that one of the natural fre-

quencies of the system is already known to repeat six times, as one might expect

the FRF-s show only two peaks although the system itself has 7 dofs. This de-

duction, however, would not be straightforward if the FRF-s are obtained experi-

mentally and they could as well be mistaken for response of a 2-dof system. The

singular solutions of the FRF matrix serve useful purpose in this context in de-

termining the number of modes present in a measured FRF. Figure A.2 show the

spectrum of the singular solutions (based on the 7× 7FRF matrix). The first sin-

gular solution shows two peaks and the second peak repeats prominently in the

next five singular value spectra. This leads to the conclusion that the FRF-s are

originating from a system with seven dofs. If we change the mass matrix such that

M11 = 100, M22 = 2004, M33 = 300, M44 = 250, M55 = 400, M66 = 50, M77 = 90kg;

Mi j = 0 ∀i 6= j; i, j = 1,2, · · · ,7 and keep the stiffness matrix as above, the system

would now possess 7 distinct natural frequencies (6.92, 15.00,17.13, 19.23, 25.77,

29.18, and 28.26 rad/s). A few of the FRF-s for the system are shown in figure A.3

and the spectrum of singular values here are as shown in figure A.3. These spectra

corroborate the fact that the system has 7 distinct natural frequencies.
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Figure A.1: Receptance functions for the 7-dof system considered in Appendix A;

system with repeated natural frequencies.
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Figure A.2: Singular values of FRF matrix considered in Appendix A; system with

repeated natural frequencies.
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Figure A.3: Receptance functions for the 7-dof system considered in Appendix A;

system with distinct natural frequencies.
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Figure A.4: Figure A.4 Singular values of FRF matrix considered in Appendix A;

system with distinct natural frequencies.
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