CATEGORIES OF POSSIBLE PROJECTS WITH I.I.Sc., Bangalore UNDER BRNS SCHEME

Sr No.	Category	Number of proposals
1	Sensor development	12
2	FM & Heat Transfer	10
3	CFD / Codes development	4
4	Seismic and Civil Structures	12
5	Structural/Fracture/Fatigue studies	7
6	Reliability	1
7	Environment	3
8	Extractive metallurgy – electrorefining	2
9	Materials/alloys	6
10	NPP accident	2
11	Corrosion	2
12	Cn I D	10
13	Computer / Database	6
14	Chemical Engineering	8

TOTAL

85

BRNS -- possible projects: Consolidated: Domain-wise

1 <u>Sensor development</u>

Sr.	Project title	Scope of work
No		
1	Development of wireless sensors	Development of wireless sensors for temperature, pressure, humidity, strain/stress force,
HSK		displacement, fluid velocity and void fraction in single and two phase flows
2	Under water acoustic sensors for low	Development of under water acoustic sensors and evaluation of signal processing techniques
HSK	frequency measurement and their field	
	evaluation	
3	Design and fabrication of multi leaf	Radiotherapy treatment of cancer patients requires highly irregular shaped fields to avoid unnecessary
	collimators for high energy X rays	irradiation of normal tissues. Multi leaf collimator (MLC) fitted under Cobalt or accelerator heads
HSK		helps in shaping such treatment fields. There is a need to design and fabricate such indigenous MLCs
		for use in radiotherapy. In these collimators, two stacks more than 50 tungsten leaves of 5 mm
		thickness and 50 mm width are positioned using individual micro motors under computer control to
		form any irregular opening.
4	Development of a liquid ionization	Imaging devices are required for verification of target coverage by planned radiation beam delivered
	chamber based high energy dosimetry	in radiotherapy treatment. A liquid ionization chamber array consisting of sixty four 10 mm x 10 mm
HSK	and imaging device	liquid ion chambers arranged in an 8 mm x 8 mm matrix is used for imaging. The work involves
		development of ion chamber array and micro-controller based front-end electronics to multiplex and
		measure currents from the individual chambers. A PC based software for data acquisition and image
		construction is also to be developed.
5	Design, development and testing of	Reactor Control Division has developed a flexible type insulted capacitance level sensor. The probe
	measuring electronics for insulated	has to measure level of D.M. water with salt content of 0.5mg/lit to 15 mg/lit, with varying process
HSK	capacitance level for water level	water temperature. The measuring electronics is required to be mounted 30m away from the sensor.
	measurement	Thus the measuring electronics measures the compound capacitance of dry probe, actual capacitance
		due to water and the cable.

		The project aims at design, development and testing of measuring electronics to measure the change in
		capacitance of level sensor. The electronics has to condition the signal and compensate for cable
		capacitance, nonlinearity and effects due to change in water temperature and salt content. The
		measuring electronics and cable and should function in the specified EMI field. The measuring
		electronics should have remote health check facility by which one can check the healthiness of the
		electronics remotely.
		The electronics shall be designed for 220V, 400 Hz power supply and should have 3-port isolation.
		The electronics should offer non-interactive span and zero adjustments. The measuring electronics
		should be designed to give standard analog output of 4-20mA with digital output based on MODBUS
		protocol to communicate to compatible host device.
6	Characterization of electro-ceramic	Computation of material properties sensor elements and their shapes and sizes suitable for
	material for development of electro-	Engineering application (Development of sensors). Impedance spectroscopy of the materials for
RKP	ceramic based sensors	deciding frequency of operation for sensors to be developed. Resonant frequency calculations from
		impedance spectroscopy data.
		Similar characterization will be done during various staves of comple4tion of sensor assembly.
		Similar computation of material properties sensor elements will be carried out for Polarized PVDF
		(Polyvinylidence fluoride) films.
		Backing material and face plate matching material will also be characterized both separately and in
		conjunction after attachment to sensor housing.
7	Design, development and	Ferroelectric Electron Emission is a phenomenon by which free electrons are emitted from the surface
	characterization of a high repetition	of a ferroelectric material such as barium titanate. This phenomenon has been utilized by some groups
RKP	rate spark gap switch based on	to make high voltage spark gap switches. There also exists quite a detailed description of a high
	triggering by ferroelectric electron	repetition rate spark gap. Reported parameters are 500 ps rise time and 70 ps jitter at a rep rate of 1Hz.
	emission	This project will involve re-engineering of a similar spark gap tailored to a specific application
		involving a repetitive pulse power system.
8	Design, development and testing of	The project aims at design, development and testing of measuring electronics for clamp-on type high
	measuring electronics for high	temperature ultrasonic flow meter for water flow measurement. The flow velocity ranges from 0.1 to 5
RKP	temperature water flow measurement	m/sec. The flow meter has to be mounted for different pipe of different sizes.
	using ultrasonic principle	Measuring electronics shall measure the average water velocity by using time of flight method. The
		method should be able to compensate the change of sound velocity in the water due to water
		temperature. The developed electronics shall excite the transmitter crystal, detect output voltage at
		receiver crystal, eliminate noise, identify the correct signal and measure the time between transmitted

		wave and received wave. The electronics shall be designed to distinguish the signals traveling through
		stainless and water.
		The measuring electronics should have remote health check facility by which one can check the
		healthiness of the electronics remotely.
		The electronics shall consist of microcontroller based flow computer. The flow computer shall accept
		pipe size input from user, compute the water flow for the different pipe sizes, indicate on the LCD in
		different engineering unit selected by user. The measuring electronics shall be validated on the actual
		setup. The velocity of water shall be measured with different pipe sizes in the test setup.
		The electronics shall be designed for 220V, 400 Hz power supply and should have 3-port isolation.
		The electronics should offer non-interactive span and zero adjustments. The measuring electronics
		should be designed to give standard analog output of 4-20mA with digital output based on MODBUS
		protocol to communicate to compatible host device.
9	Development of specialized optical	Development of procedures for optical fibres for FBR to be operated at 700 C:
	sensor fibres for high temperature	- stripping of acryl amide coating from commercial optical multitude fibre
KVK	applications (700 C)	- preparation of fibre surface for proper metal adhesion
		- coating the fibre with gold or any other suitable metal
		- testing of coated fibre for integrity at rated specification
10	Sensitivity analysis for permanent	To do numerical simulation based on electromagnetic modeling to estimate sensitivity. The code
	magnet flow meter	developed should be suitable for estimating the sensitivity of all the 14 sizes of flow meters which are
KVK		used in PFBR. Measured parameters of flowmeter and the process parameters will be given as input to
		the code. The code should be able to estimate the sensitivity at different flow rates and at different
		temperatures. The code will be validated based on data provided by IGCAR.
11	Optical cone beam CT scanner for 3D	3D dosimetery system is a promosing technique for verification of complex 3D dose distribution. 3D
	gel dosimetery system	Gel dosimetry system is made up of tissue equivalent organic compound whose opacity changes with
HSK		exposure to radiation beam. In optical cone beam CT scanners an optical light beam and a light
		detector are arranged across a gel dosimeter block opposite each other. The transmitted light intensity
		is continuously sampled and stored as the light detector assembly rotates to cover the entire dosimeter
		block. A suitable software is to be developed to reconstruct the dose distribution in the dosimeter
		block from the optical density data.
12	Development of image reader system	Photo Stimulated Luminescence phosphors are being developed in RP&AD, BARC from which
	for photo stimulated luminescence	image plates will be fabricated. There is a need to develop a LASER based image scanning system for
HSK	(PSL) phosphor plates	scanning the exposed image plate. The system involves design of a LASER scanner and a

	luminescence measurement unit to generate the pixel data of the image. The necessary software for
	image reconstruction from the pixel data is to be developed. The system should have the facility to
	change the LASER source so that the reader system can be used for different phosphors.

2 <u>FM & Heat Transfer</u>

Sr.	Project title	Scope of work
No		
1	Condensation heat transfer study	Evaluation of condensation heat transfer coefficient for concrete, steel, concrete with epoxy coatings
HSK		etc in presence of air steam ratio, saturated steam, superheated steam
2	Heat transfer studies for nano	Experimental studies on basic heat transfer, properties generation, heat transfer coefficient and
HSK	fluids	pressure drop measurements for nano fluids. Few nano fluids will be synthesized and characterized in
		various divisions of BARC and other nano fluids will be taken from commercial sources. Thermal
		conductivity measurement will be done at BARC and /or collaborative institutes. Small heat
		exchanger loops will be established at collaborative institutes for a range of nano fluids for basic
		fundamental heat transfer studies.
3	Debri bed heat transfer during	To study the heat transfer aspects of the debri bed along with stagnant water available on the outer
	severe accident for PHWR	surface of the Calandria vessel. This work aims to assess the debri bed temperatures for a prolonged
HSK		time to evaluate the Calandria vessel integrity.
4	The effect of fuel element	The fuel elements are welded with a wire wrap or split spacers to provide gap between fuel elements
	spacing devices on flow mixing	to avoid hot spot. These spacers also provide mixing in the different sub-channels of the bundle by
KBD	across the bundle	way of disturbance and by flow direction. The influence of these devices in promoting cross flow
		across the elements in the sub channels of the bundle is to be estimated. This job is important for the
		aging reactors from the point of channel radial creep and consequent hot spots expected across fuel
		elements.
		The job is of selecting different spacing devices and quantifying their effect in enhancing the cross
		flow. It involves literature survey, experimentation and theoretical thermal - hydraulic analysis.
		Period will be $2-3$ years.
5	Estimation of gap heat transfer	The heat transfer across fuel element involves thermal resistance across sheath gap which constitutes
	coefficients across fuel sheath	UO2, graphite and Zircaloy. The material surface roughness and the interfacial pressure across them
KBD	gap	also play a role in the heat transfer conductance. It involves literature survey, experimentation and
		theoretical thermal analysis. About 2 years.

6	Pool thermal hydraulics of	To develop a complete Computational Fluid Dynamics (CFD) model of the primary system of the
KVK	innovative fast breeder reactor	planned innovative design with adequate internal details, incorporating conjugate heat transfer option
		and carryout thermal hydraulic investigation for various steady and transient conditions of the reactor.
7	Simulation of gas entrainment in	To develop mathematical models that predict the various aspects of gas entrainment and validate the
	sodium pools of FBR	mathematical models based on the suitable experiments. The investigation would be on (i) sodium
KVK	_	free surface velocity conditions that can avoid gas entrainment, (ii) locations of the grid plate where
		entrained gas bubbles could segregate and (iii) positions of purger sub-assemblies in grid plate and
		holes in purger subassemblies that are conducive for de-gassing of the grid plate, without allowing the
		gas to pass through fuel subassemblies.
8	Thermal hydraulic investigation	To develop a 3-D computational fluid dynamics (CFD) model of the T-joint and simulate flow and
KVK	of thermal stripping in T – joints	temperature distributions in sodium and in metal walls. The transient study should adopt a suitable
	of FBR	turbulence model such as Large Eddy Simulation which is suitable for this type of applications. The
		predictions of the CFD studies can be validated by suitable experiments in water.
9	Thermal hydraulic analysis of	Estimation of multi-dimentional flow and temperature distribution under steady state condition for
KVK	integrated safety grade decay	various shapes of IHX. To establish variation of flow and temperature distribution with respect to
	heat removal system	geometric parameters like ratio of distance in the minor to major axis in case of ellipse. The primary
		flow and inlet temperature, secondary flow and inlet temperature and power transferred remain
		constant.
10	Thermal hydraulic analysis of	Estimation of multi-dimensional flow and temperature distribution under steady state condition for
KVK	horse shoe shape IHX	various shapes of IHX. To establish variation of flow and temperature distribution with respect to
		geometric parameters like ratio of distance in the minor to major axis in case of ellipse. The primary
		flow and inlet temperature, secondary flow and inlet temperature and power transferred remains
		constant.

3 <u>CFD / Codes development</u>

Sr.	Project title	Scope of work
No		
1	Free surface tracking	Experiments on basic 3D dam break; similar experiments with the presence of single and array of
	experiments	structures for basic understanding of the phenomenon and data generation for CFD code validation.
HSK		The experiment will be carried out at prospective collaborative institutes and numerical modeling will
		be done at RSD, BARC
2	Evaluation of flow assisted	Experimental evaluation and characterization of FAC problems with CFD.
	corrosion problems in tubes,	
HSK	pipes and pipe bends	
3	MPI based specific CFD code	MPI based unstructured CFD code development for buoyant gas dispersion in turbulent situation for
	development for light scalar	multi compartment enclosures
HSK	dispersion in multi-compartment	
	enclosures	
4	Development of parallel	Development of molecular dynamic .Monte Carlo codes for atomistic calculations, coupled atomistic
	numerical methodologies to	and finite element models for dealing large systems, meso scale materials models such as 2D and 3 D
HSK	predict properties of nuclear	dislocation dynamics simulations and parallelization of these codes.
	materials	

4 <u>Seismic and Civil Structures</u>

Sr.	Project title	Scope of work
No		
1	Evaluation of concrete structures	Fire rating of concrete structures and its evaluation for thermal and high strain rate mechanical loads.
HSK	under fire, seismic and high	Characterization of near field and tele-seismic waves including effects in various soil strata.
	strain rate impact loads	
2	Experimental and analytical	Experimental estimation of
	studies on estimation of leakage	- Leakage due to permeability of concrete
HSK	rate for reinforced concrete and	- Leakage through the cracks which may get formed as a result of overpressure
	pre stressed concrete	- Leakage through the penetrations in concrete
3	Seismic response of structures	Static and dynamic tests are required to be done on frames without and with URM infill panels having
	and equipments	different aspect ratios to see the effects of panels on stiffness of the frames. A good analytical model
HSK		is to be developed that can predict these effects accurately and shall have easy implementation in
		analysis of complete structure. An analytical model shall be developed to predict the strength of
		panels under out-of-plane loads and to retrofit them effectively.
4	Development of	The performance of soil bed as an isolation media under earthquake varying soil strength parameters
	dampeners/isolators for	and water table will also be evaluated. The techno-economic feasibilities in adopting dampers to
HSK	reduction and control of seismic	satisfy the serviceability conditions of the superstructure will also be studied.
	response	
5	Active and passive mechanism	In this project, semi active devices and constitutive relations for analysis purpose will be developed.
HSK	for vibration control	
6	Response of the coolant tube	The coolant tube will be mounted on two supports representing the lattice tubes in the end shield.
	with Fuelling Machine latched	Mass of about 9 tons each representing the fueling machine will be attached on to the end fitting at
HSK	on to the coolant tube	two ends of the end fitting. The cylinder of the "Z" motion hydraulic cylinder will be connected to the
		end fitting whereas the piston of the "Z" motion hydraulic cylinder will be connected to the structure
		representing the fuelling machine and the Head. The input motion will be given at the base of the two
		structures representing the bridge and the head assembly and the motion coming from the end shield

		through the lattice tube to the coolant tube. The stresses and the forces coming on to the coolant tube will be measured during the shake table test.
7 KBD	Dynamic test to find out the damage to the flow tube of the reactivity mechanism and the calandria coolant tube assembly	The flow tube of the reactivity mechanism will be mounted in the pseuo dynamic test facility in vertical direction and will be given an input motion by two shakers representing the motion coming to the flow tube through the calandria shell top and bottom. The calandria coolant tube assembly will be given an input motion as per seismic movements coming to the coolant through the lattice tube in the end shield. The impact between the flow tube and the guide tube and the calandria tube will be measured in terms of displacement, stresses in the tubes and damage at the point of contact between the calandria tube and the flow tube.
8 KBD	Test on cable tray supports along with cable control and cables	The test will be conducted on three different sites of cable tray supports supporting the cable trays ranging from 5-20 nos. The aim of the test will be to find out the damping of the system with cables in the cable trays when the trays are filled partially, full and 50% more than the capacity and with application of the fire retardant paint at an interval of 6.0 m. During the test, the stress in the cable trays and cable supports and the acceleration in the cable trays and the cable tray support will be measured.
9 KBD	Test on pipe for getting the damping in the piping system and also the stress	The test will be conducted on various sizes of pipes from 15 mm, 25 mm, to 50 mm with usual dead weight supports and seismic supports to resist the earthquake resultant forces in the direction normal to the axis of the piping at an interval of 3-4 dead weight support spans. The test will be conducted as above to arrive at damping of the piping system, the stress (strain) in the pipe for the different levels of input motion from 0.2G to 1G.
10 KBD	Variable frequency equivalent damping in the piping system	In a piping, supported at number of points with sufficient gap between the piping and the support varying from 1 to 3 mm, the frequencies of the piping keep on changing whenver the piping makes a contact at the support point and then when it looses the contact with support. The continuously changing frequencies of the piping give rise to a reduced response in comparison to a fixed frequency system.
11	Seismic analysis of piping integrated with building	To get more realistic results for piping and embedment loads through integrated analysis of building (3D models) with piping (1D)
KVK		To bring out the differences between the integrated approach based on multi-support excitation and quantify the conservatism in decoupling analysis for piping
12 KVK	Effects of hot clamps in sodium piping	Detailed analysis of local stresses in sodium piping at the location of hot clamps seismic restraints under steady state as well as hot / cold thermal shocks and to recommend alternate designs, to comply RCC-MR piping rules.

5 <u>Structural/Fracture/Fatigue studies</u>

Sr.	Project title	Scope of work
No		
1	Pressurized thermal shock (PTS)	A small size vessel having an external flaw will be pressurized upto 10 MPa and will be heated to 300
HSK	test on small size pressure vessel	С.
2	Thermal shock experiment on	The test will consist of a small cruciform specimen having a part-through crack at around 300 C being
HSK	cruciform specimen	subjected to bending load and then sudden spraying of cold water to study the crack surface to study
		the crack growth characterization.
3	Evaluation of damage mechanics	Studying of the evolution of void volume fraction in different materials with plastic strain and
HSK	parameters of bi-metallic weld	different triaxial stress fields to predict the crack initiation and propagation in the component with bi-
	joints	metallic joints.
4	In-situ SEM studies of damage	Fatigue damage mechanics parameters for the materials will be evaluated.
HSK	evolution in fatigue loading	
5	Numerical and analytical studies	Development of J-integral for the nozzle and T-junction corner cracks.
HSK	on estimation of leakage rate for	
	reinforced concrete and	
	pressurized concrete	
6	Design confirmation of anchored	- Conceptual design of embedded structure involving shell, sodium resistant concrete, load
	safety vessel	bearing concrete along with cooling coils and reinforcement bars
KVK		- Thermal analysis of the structure to respect the temperature limits
		- Development of construction methodology
		- Validation of design by mock up tests
		- Assessment of aging effects
7	Stress indices for pipe bends	Development of modified correlations of stress indices applicable to pipe bends having large d/t ratios
	with large diameter to thickness	based on the understanding of structural behaviour of such bends and on the basis of shell theory.
KVK	ratio	Robust guidelines to demonstrate the structural integrity of pipe bends with large d/t ratio including
		possible risk of additional failure modes such as buckling, which can be recommended to be included

	in future in the design codes.

6 <u>Reliability</u>

Sr.	Project title	Scope of work
No		
1	Development of methodology	This project involves developing the reliability prediction models for the software systems. In
HSK	for quantifying the reliability of	addition to the existing software reliability growth models (SRGM) for the prediction of software
	software in computer based	reliability, as set of new prediction models will be derived based on the software failures. A
	systems	methodology is developed to derive the reliability from the quality metrices that are generated by
		several testing tools for the given source code.

7 <u>Environment</u>

Sr.	Project title	Scope of work
No		
1	Monitoring and modeling of	Monitoring of toxic chemical pollutants in different environmental matrices around thermal power
HSK	chemical pollutants from thermal	plants.
	power plants	Stack monitoring for emission inventory and collection of meterological data.
		Application of dispersion modeling and modeling the behaviour of these chemical pollutants in
		different environmental matrices.
2	Source apportionment of toxic	Ambient air samples will be collected and analysis will be carried out for various toxic constituents.
HSK	pollutants using receptor	Emission inventory for stationary (industries) and mobile (transportation) sources at the proposed site
	modeling techniques	and collection of meterological data.
		The concentration data thus generated will be applied in the receptor modeling technique for the
		apportionment of different possible sources.
3	Dust dispersion in open cast	Continuous monitoring of the dust load due to various mining activities.
HSK	mines – monitoring and	Continuous monitoring of size segregated particulates at open cast mining areas.
	modelling	Estimation of emission rates of each type of mining activity.
		Collection of simultaneous meterological data.
		Use of dispersion models to predict the dust concentration at various distances from the mine.

8 <u>Extractive metallurgy – electrorefining</u>

Sr.	Project title	Scope of work
No		
1	High temperature counter	Molten salt electrorefining is a pyrochemical reprocession method for processing irradiated U-Pu-Zr
	current extraction of lanthanide	alloy fuels. In this process carried out at 773K, the actinides are selectively electrotransported from
PRVR	metals from the molten LiCl-	the spent fuel, which forms the anode of the electrorefining cell, through molten LiCl-KCl electrolyte
	KCl containing rare earth	to a solid or liquid cadmium cathode and deposted as metals. During this process, some amount of the
	chlorides by equilibration with	actinides remain as chlorides in the salt phase which have to be extracted in to cadmium phase so that
	LiCl-Cd alloys	they can be recovered later. In the process flow sheet, this is proposed to be done by counter current
		extraction using pyrocontactors.
2	Conceptual design of bulk	The electrorefining process mentioned above has hitherto been carried out only in laboratory scale in
PRVR	electrorefining cells –	India. It has to be scaled up to engineering scale so that plants based on the process can be designed in
	optimization of configuration for	a few years. The design of the electrorefining cells which can have process tens of kilogram amounts
	enhancing throughput and	of fuel materials has to be optimized for increasing the thoughput without affecting the purity of the
	enabling	product deposit. Further, the design aspects should enable remote operation since the irradiated fuels
	automation/remotization	will be handled in hot cells. The optimization involves the evaluation of the impact of the geometry,
		size and the number of electrodes.

9 <u>Materials/alloys</u>

Sr.	Project title	Scope of work
No		
1	Assessment of mechanical	IGCAR will supply four heats of 316LN for the evaluation of (i)tensile, (ii)creep, and (iii) low cycle
PRVR	behavior of nitrogen alloyed	fatigue properties as a part of a round robin programme. Tensile properties will be evaluated at
	stainless steels	various temperatures in the range 300-923K. Creep properties will be evaluated at 823, 873 and 923K
		at four stress levels each. Strain controlled low cycle fatigue tests will be conducted at 823 and 873K
		at four strain amplitudes. Micro mechanisms of deformation and fracture will be evaluated.
2	Characterization of mechanical	IGCAR will supply four heats of Mod.9CrlMo steel 3 for the evaluation of tensile and creep
PRVR	properties of modified 9Cr-1Mo	properties. Tensile properties will be evaluated at various temperatures in the range 300-923K. Creep
	steel and its applications	properties will be evaluated at 773, 823 and 873K. Micromechanisms of deformation land fracture
		will be evaluated and the role of nitrogen and silicon will be studied on the precipitation and
		deformation behavior.
3	Electromagnetic multi-	.It is proposed to use Magnetic Barkhausen Emission (MBE) and Eddy Current (EC) techniques and
KVK	parametric approach to material	input the NDE parameters from the heat treated specimen to an artificial neural network for on-line
	characterization	quantitative evaluation of microstructural degradation and materials properties.
		NIIT will procure raw material required and prepare all the samples. It will do all the heat treatments
		and optical microscopic evaluation and then the NDE measurements will be done at IGCAR. Then
		NIT will develop an artificial neural network that takes measured NDE parameters as input and gives
		desired materials properties or microstrucral attributes as output.
4	Electrochemical impedance	At IGCAR lots of data have been generated on the degree of sensitization on different types of
KVK	spectroscopy (EIS) and	stainless steels with various amount cold work using ASTM standard test (A-262 practice E) and
	electrochemical noise (ECN)	electrochemical potentiokinetic reactivation (EPR) techniques. For monitoring and early evaluation of
	techniques to evaluate	sensitization process, work was initiated utilizing EIS and ECN methods in collaboration with NIT-
	sensitization in stainless steels	Nagpur. EIS studies have already been carried out on 316LN stainless steels for which the previous
		data with other techniques are available. It is planned to carry out further work on cold worked
		material and use of ECN technique

5	Structure and engineering of	The CODATA addresses the international information society with quantitative data resulting from
KVK	metallurgical database through	the experimental measurements or observations in various fields of science and engineering. Particular
	CODATA	emphasis is on the data management problems common to different scientific and engineering
		discipline and on the generated data which can be used outside its field. India has a large source of
		materials property data. Work has been initiated by a national team with Dr. Dayal as convener to
		collect the data from various important laboratories in India, particularly on mechanical and corrosion
		metallurgy. The collected data are tabulated in form of data sheets which contain relevant material
		properties like Creep, Fatigue, Tensile, Fracture and Corrosion. Since a large amount of work is
		needed in this area, it has been planned to seek the financial and manpower support from DST. The
		principal investigators and collaborators for to carry out this work will be taken from IGCAR, NML
		and NIIT Surathkal.
6	Equal channel angular extrusion	Equal Channel Angular Extrusion (ECAE) is one process through which ultra fine grain size could be
KVK	process for production of ultra-	easily achieved. In international level, the process has come at a stage when nanostructured materials
	fine grained Ti-Ta-Nb alloy	are considered for varied applications. ECAE provides an opportunity to achieve significant
		improvement in mechanical propertiesIt is reported that a ten-fold increase in yield stress, can be
		achieved in ECAE in comparison to conventional material. In the present project proposal, TiTaNb
		alloy has been chosen as the material. The development of the process to produce structurals- rods and
		tubes, is attempted in the proposed work. NITK will do ECAE of the alloy; IGCAR supports on
		characterization.

10 <u>NPP accident</u>

Sr.	Project title	Scope of work
No		
1	Analysis for 540 MWe PHWR /	In case of a postulated accident involving a PT rupture, the CT may or may not rupture. If it is
	700 MWe Calandria – End	assumed that a Pt and its surrounding CT rupture simultaneously, the hot D_2O coolant (300 ⁰ C) at high
KBD	Shield assembly to study the	pressure (11 MPa) gets released into the moderator. Thus the moderator gets hotter and pressurized.
	pressure and Calandria tube	The internal pressure of the calandria acts externally on other CTs and guide tubes (GT) various
	rupture resulting in pressure	vertical reactivity devices. To limit the external pressure on these components even under assumed
	developed in the Calandria	accidental conditions, four rupture disks are provided on the calandria shell. These rupture discs burst
		at 1.4 Kg./sq.cm (g).
2	Experimental and analytical	Assessment of pressure tube behavior under various decay heat (1% to 3% FP) with different water
KBD	studies on pressure tube	levels (20% - 70%) resulting into large circumferential temperature variation is an important safety
	behaviour under accident	aspect which need to be studied. The experimental studies would be required with the coolant
	condition leading to partial	temperature range from 160°C to 250°C with corresponding saturation pressure (5.2 kg. /cm ² (g) to 39
	coolant in the pressure tube	kg./cm ² (g)). At the junction between water & steam interface sudden variation in temperature &
	(stratified condition) with decay	stresses are expected which may lead to failure/no failure of pressure tube which is required to be
	heat generation from fuel bundle	established by experiment. Further, these results are to be incorporated in the analytical software.
	in the pressure tube	

11 <u>Corrosion</u>

Sr.	Project title	Scope of work
No		
1	Study of corrosion behavior of	Zircaloy corrosion tests in hydrogen water chemistry with pH 10-10.5 and oxygen water chemistry
	Zircaloy	wigh pH around 7.0, under water and in steam - water mixture tests at different Temperatures upto
KBD		400°C to be conducted/studied. Both uniform corrosion and nodular corrosion to be evaluated during
VK		the tests/studies. Effect of surface condition of the tube also to be studied.
2	Diffusion, oxidation and	It would involve synthesis of amorphous and nano-crystalline materials by plasma processing/laser
	corrosion studies on amorphous	processing and look for an enhancement in their oxidation/corrosion properties. Effects of ion beam
KVK	and nano-crystalline materials	irradiation (both low and high energy) on surface sensitive properties of amorphous alloys and their
		crystalline counterparts will also be investigated. The alloys of interest are Zr, Ti, Fe and Ni based
		amorphous and nano-crystalline alloys.

12 <u>Cn I D</u>

Sr.	Project title	Scope of work
No		
1	Fractional order PID control	The research project shall aim to find out the practical advantages in adapting a fractional PID
	system	controller over a conventional PID for a control loop. A control algorithm using fractional PID can be
KBD		developed for a simple control system involving level control or pressure control or motion control. A
		physical setup/model of the process shall be made and also a mathematical model of the process shall
		be worked out. A computer based control system can be developed with data acquisition, validation,
		processing/computation and generation of outputs. The algorithm for control shall be developed with
		conventional PID and also with fractional PID. The computer shall be capable of executing any of the
		desired algorithms. A comparison of the two algorithms shall be prepared. The study shall validate the
		mathematical model which can be used for comparing the two algorithms with the model and for
		demonstration. It shall also bring out the comparison with respect to tuning of the control loop.
2	Development of Token Passing	The main advantages offered by Ethernet technology like very high communication bandwidth, easy
	Protocol on Ethernet	availability and low cost can be utilized to meet hard real time communication requirements by
RKP		developing a deterministic arbitration mechanism for Ethernet. The immediate choice is industry
		proven token passing protocol based on 802.4 standards. Hence development of token passing
		protocol on Ethernet is proposed. This protocol has to be implemented in software at MAC layer such
		that while meeting the deterministic real time data communication requirements, it will provide
		communication API to higher layers. The design should be efficient and shall impose minimum
		communication overhead. After detailing the requirements of token passing protocol based on 802.4
		standards, the proposed protocol should be developed and implemented on Ethernet hardware readily
		available in the market as well as on the in-house developed hardware.
3	Development of an alarm	The software shall be developed on windows OS. Following sub-modules are envisaged in the
	management, optimization and	proposed software suite. (a) Automatic Data Collection and Archive: this module shall capture and
RKP	presentation software suite	archive alarms, operator action, and system events from the plant database through OPC or any other

		standard connectivity. (b) Rules and Logic Editor – this editor module shall facilitate to implement the
		rules and logic of alarm filtering, suppression and prioritization algorithms (development of
		algorithms are not in the scope) (c) Alarm Analysis - this module benchmarks alarm system
		performance vs. established standards. (d) Alarm Documentation and Rationalization – optimizes and
		documents alarm system configuration as per engineering practices. (e)Audit and Enforce - shall
		maintain a desired alarm strategy by protecting alarm settings from improper change. (f) Alarm
		Shelving – shall identify and handle nuisance alarms in real-time to enables the operators to focus
		where needed.(e) State-Based Alarms & Alarm Flood Suppression – this module shall dynamically
		adjusts alarm settings to match plant operations and manages alarm floods during process upsets. (f)
		Alarm Viewer – provides performance visualization and advisory/knowledge support.
4	Development of RTOS	We need to develop an RTOS that will (a) Manage the interface to the underlying computer hardware.
		(b) Schedule and pre-empt tasks (c) Provide Inter-task communication services. (d) Manage Memory
RKP		with protection(space Partitioning) (e) Provide Temporal partitioning to ensure services received from
		shared resources (such as processor) by the software in one partition cannot be affected by the
		software in another partition. (f) Provide common services like file system support, I/O to standard
		devices such as keyboards, CRT displays, printer etc. including RS-232 communication and network
		service for TCP/IP on Ethernet. (g) Support standard POSIX (IEEE Std 1003.1) API for the
		application programs but limited to the POSIX option group applicable for Real-time application.
5	RTOS viewing tool	The viewing/monitoring tools shall provide (a) Facility to receive, display, store the RTOS events
		(task switching, interrupt) (b) Precision time stamp (~ 0.1 ms) received from target hardware. (c)
RKP		Good GUI (Graphical User Interface) with zoom-in/zoom-out for data display windows. (d) Display
		both in graphical &tabular form with configurable history storage (e) Communicate to the target
		hardware via RS-232C as well as Ethernet.
6	Development and	The scope of work is to develop the necessary algorithm (based upon a suitable protocol such as
	implementation of Filed bus	Flexray-Time Triggered or Profibus etc.) and implement it in an FPGA. Hardware language used for
RKP	algorithm for nuclear power	implementation should be Verilog. The implementation has to be tested by simulation and
	plant	deployment.
7	Robust shape based part	Nature of work (i) Class of work: computational AI – Algorithm development, stable and rugged
	recognition system	feature definition formation, search technique development. (ii) Platform: Desktop computing system
RKP		P4 – 3.2 GHz, Windows o/s, Open GL / graphics libraries. (A) Theoretical work/ code development
		(Phase I) (1) Algorithm development (2) Raw Data definition formulation for sensing. (3) feature
		visualization for test/ validation (4) Knowledge base structure formulation (5) (a)Search method

		development (b) Partial data based match wigh merit indication (B) Experimental work (Phase II) (1)
		Sampling and data generation (2) best match recovery (3) Match validation through graphics model.
8	Implementation of REED-	Read-Solomon codes are block-based error correcting codes with a wide range of applications in
RKP	SOLOMON coding in VHDL	digital communications and storage. Reed-Solomon codes are used to correct errors in many systems
		including: (i) Storage devices (including tape, Compact Disk, DVD barcodes, etc) (ii) Wireless or
		mobile communications (including cellular telephones, microwave links etc.) (iii) Satellite
		communications (iv) Digital television / DVB (v)High speed modems such as ADSL, xDSL etc.
9	On line mimics as part of	On line mimics of machine operation is now becoming part of the control system and training
	computer based control systems	simulators. The development of mimic algorithm involves using open GL 3D graphical library
RKP		functions on VC++. Advanced techniques like Bump Mapping in 3 D graphics has hardware
		acceleration support on the latest Graphics cards. Iy adds minute details on an object, which would
		otherwise require a large number of polygons. Knowledge of graphics pipeline fundamentals, matrices
		operation concepts, Phong-Blim lighting models, texture mapping, multi texturing, cube mapping
		techniques etc is used. Knowledge of vectors and matrices operations, object oriented programming
		and strong mathematical background is prerequisite.
10	Development of an algorithm to	Function block diagram (FBD) is one of the recommended graphical language for programming PLC.
	determine function block	The FBD network can be emulated by a directed graph model where a large number of nodes
RKP	execution sequence	(representing blocks) connected randomly with each other with directed lines, where the direction of
		arrows denotes the dependency. This model is to be analysed to find the sequence in which the nodes
		can be called for execution.

13 <u>Computer / Database</u>

Sr.	Project title	Scope of work
No		
1	Real time database for	There are approximately 50,000 parameter which are monitored by computerized information
	information system used in	system in modern Nuclear Power Plants. Data for all the parameter is collected at one-second
KBD	nuclear power plants	interval. It is observed that with use of standard database engines, data updating at 50000 records
		per second and then retrieval of records of selected parameters, in acceptable time limit becomes
		very difficult. In traditional Information systems this problem is over come by using not using
		standard database and customized files are used to handle the higher data transfer rates. Draw back
		of this scheme is we can not used standard SQL commands for processing, and it becomes difficult
		to use it for data warehousing and mining purpose. This project aims to find or develop database,
		which can handle 80000 records per seconds so that it can be used in real timke application, using
		Open Source Database and Linux Operating system.
2	Development of open source	There are approximately 50,000 parameter which are monitored by Computerized Information
	MMI component library	System in modern Nuclear Power Plants. Data for all the parameter is collected at one-second
KBD		interval. The parameters are displayed on various displays using various standard displays such as
		"Real Time Graphical trend", "Bar Graph"" "Tabular Display", "System MIMIC display", Meters
		etc. This project aims to find or develop Open Source component library for Linux Operating
		System, so that the Display software of any computer based system can be developed easily. This
		Project will also include development of components for standard protocols such as MODBUS,
		MODBUS TCP, OPC etc.
3	Network security monitoring and	a) The complete understanding of the TCP/IP protocols, SNMP protocols, the hacking attempts, the
	management	virus & worm propagation etc. (b) Development of software for analyzing the traffic in the network,
KVK		compare it with known hacking event signatures and kill the connection. If the intrusion attempts are
		continued, the packets from the source address shall be blocked. In case the attempts are from
		intranet, the corresponding port shall be disabled in the switch. (c) Monitor continuously the traffic

		for virus or worm patterns and alert the system administrator through E-Mail or alarm. (d) In case the virus or broadcast traffic goes beyond a set limit, the corresponding port in the switch shall be disabled. (e) Even in normal scenario, it shall collect the statistics of utilization from each port
		inform the administrator on request.
4 KVK	Alternative public key cryptographic algorithm for DAE	A Public Key Cryptosystem uses asymmetric encryption of confidential messages and transaction, to authenticate the origin of such data, and to guarantee data integrity. Public key techniques are typically much more computationally intensive and substantially slower in performance than symmetric algorithms. This project involves formulating a new public key cryptographic method with improved security and performance features. It entails evolving an alternative scheme based on
		study and analysis of various computational problems upon which their security is based.
		The security of the underlying algorithm is vital to the security of higher-level protocols and
		applications. Concerns about security and the relatively slow operation of asymmetric crypto
		algorithms motivates us to propose an alternative design which is impervious to different
		cryptanalysis methods and relatively fast. Though most widely used and best-analyzed asymmetric
		ciphers like RSA are resistant to cryptanalysis, it's not beyond the bounds of reason that the code
		might be cracked in the foreseeable future with the existing key size. Also RSA implementations
		with recommended key size (1024/2048 bits) are not available to DAE.
5	Development of C cross-	The scope of the project involves developing individual components like front-end, code generator,
	compiler	optimizer and assembler tools and porting libraries for the specific processor(s) complete compiler
KVK		tool-chain. This project focuses on developing production C compiler that complies with ANSI
		standard for generating code for Motorola 68020/68030 architecture. It should run on commonly
		available Intel x86 platform and compile code for Motorola 68xxx platform. The design shall use well established compiler techniques, consisting of a target-independent front-end and a target-
		dependent back-end modules packaged together as single program coupled with user interface
		Since it is designed as multi-target compiler it can be enhanced in future to produce code for
		different microprocessor architectures (like IA-32, IA-64).
6	Development of simulation tool	The scope of the project includes development of Simulation tool by porting the available
-	for FBR	TECHCOMM simulation source code of all the important components and devices to a PC based
KVK		system. Additional features like GUI will also be included to make the Simulation tool more user
		friendly. The proposed Simulation tool will consist of the following important features:
		(i) Creation & configuration of Process Models. (b) Generation of Proce4ss Flow Sheet using drag
		and drop option of models. (c) Profile viewing of process models using static & dynamic

	variables/parameters. (d) Generation of Logic Sheet using drag & drop option of logic devices. (e)
	Generation of Virtual Panel using drag & drop option of components/devices. (f) Interfacing with
	the database. (g) Development of Instructor station module.

14 <u>Chemical Engineering</u>

Sr.	Project title	Scope of work
	Kinetics of Bunsen section reactions	Kinetic data of Bunsen reaction and other Sulfur and Hydrogen sulphide forming side reactions are scanty. Research project envisages devising suitable experimental set up with appropriate analytical
DSS/ BPS		and programme to generate quantitative data of reaction rates, under operating conditions of $20^{\circ}C - 125^{\circ}C$ and pressures up to 10 bar.
2	Measurement and modeling of vapour liquid equiliria and liquid	Hydriodic Acid phase (HIx) concentration and subsequent decomposition of HI, is one of the challenging jobs in the development of I-S process. Various process flow sheet options have to be
DSS/	– liquid equilibria of HI + I2 +	evaluated for their process complexity Vs. energy consumption for a given capacity of HIx processed.
BPS	H2O (HIx) system	VLE & LLE of HIx lphase is the most important database required for carrying out the process flow
	VLE at temperature of $115 - 320$	sheet alalysis and process selection. The project involves compilation of available data on HIx mixture
	C & pressure $1 - 50$ bar. LLE at	and development of new thermodynamics database for HIx for larger [HI]/[H ₂ O] ration & Iodine
	temperature of 115 – 320 C	contents including the total pressure and partial pressures. Also the database generated shall be
		modeled using suitable electrolytic / chemistry models for predictions of VLE & LLE. The VLE
		measurement shall be carried out in 3 steps.
		Step: 1 Measurement of total pressure of HIx up to 50 bar and 300 ^o C so as to determine the azeotropic
		concentration versus temperature and $[I_2] / [H_2O]$ ratio.
		Step: 2 Measurement of partial vapor pressure around the amnbient pressure. This data in combination
		with the total pressure data in step 1 will form a crucial database for model improvement.
		Step: 3 Measurement of partial pressure up to 50 bars to complete the database.
3	Measurement and modeling of	In Bunsen reaction of I-S process, Hydriodic acid and sulfuric acid are produced as per the following
	vapour-liquid and liquid-liquid	equation. $(9I_2) + (SO_2) + (16 H_2O) \rightarrow (2HI + 10 H_2O + 8I_2) + (H_2SO_4 + 4H_2O)$. The vapor liquid and
DSS/	equilibria of H2SO4 HI – I2	liquid-liquid equilibria of $H_2SO_4 - HI - I_2 - H_2O$ system is essential for the optimization of Bunsen

BPS	H2O system – VLE at 70 -125 C	section process flow sheet. The project involves the experimental measurement of VLE & LLE data
	and pressure upto 10 bar. LLE at	and the development of suitable models for the same.
	70 – 125 C	
4	Study of chemical reaction	Tributyl phosphate solvent dissoled in aqueous solutions is known to form explosive mixtures under
	runaway of TBP-dilute nitric	certain conditions with nitric acid and metal nitrates. The conditions that lead to this under various
KVK	acid – nitrate salts –water system	parametric conditions and the energy release have to be modeled so that they can design inputs for
	at elevated temperatures	design of evaporators.
5	Purification of degraded solvent	Tributyl phosphate gets degraded chemically as well as radiolytically. Along with the solvent, the
		diluent also gets degraded. Various methods are adopted for purification of this degraded solvent. One
KVK		such method is vacuum distillation. VLE data to be established and a vacuum distillation unit is to be
		designed and demonstrated.
6	Design and development of	Annular Linear Induction Pump (ALIP) for Safety Grade Decay Heat Removal Circuit in PFBR have
	annular linear induction pump	been developed with capacities from 5 to 170 m ³ /hr. The scope of this project includes:
KVK	for SGDHR system	Design and development of ALIP of specified capacity
		Mathematical modeling and simulation for the specified ALIP
		Prediction of performance for variable voltage operation using autotransformer for the ALIP
		Prediction of performance using variable voltage variable frequency (V/f) drive for the ALIP
		Prediction of forbidden zone for the ALIP
		Thermal analysis of specified ALIP and evaluation of blower capacity for safe operation of ALIP
7	Cavitation studies on centrifugal	The objective are to:
	pumps	To estimate the erosion rate in a pump impeller from measurements of the collapse pressure of
KVK		cavitation bubbles using state of the art measurement techniques.: Some techniques, which can be
		used, are (a) piezoelectric transducers (b) fibre optic transducers (c) pressure sensitive photographic
		film (i) To measure the temperatures generated during final stages of bubble collapse. (ii) To measure
		the pressure and velocity patterns in the flow passages in the impeller/ diffuser and compare with
		results from CFD analysis. This will be of use in improving blade design. (iii) Comparison of above
		results with that from a liquid metal such as Na-K alloy or any other liquid that has fluid dynamic
		properties similar to that of sodium (the reactor coolant) and can be handled with minimum fuss in the
		laboratory.
		Type and size of pump : A vertical pump of specific speed close to 50 (metric units) of suitable size
		(power rating ` 500 kW) may be used for the tests.
8	Development of radiation	The aim is to develop glasses with varying optical properties like refractive index, Abbe number, etc.

	resistant optical grade glasses	with very good spectral transmittance. Availability of a combination of large variety of optical glasses
KVK		with varying properties are essential, for designing aberration free lens systems for a variety of nuclear
		applications – for example lens for cameras, microscopes, viewing systems, periscopes etc.