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Abstract
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes’ theorem.  The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor’s discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplified by considering the reliability analysis of a few low dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on limited amount of pertinent Monte Carlo simulations. 
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1. Introduction
The present study considers the problem of reliability assessment of existing structural systems which typically carry dynamic loads during their normal operation. We take that a realistic representation of these loads demands the application of probabilistic models. One could consider an existing railway bridge as an example of this class of structures. Here the formation loads are dynamic in nature and, given the uncertainties that are invariably involved in train speeds, formation lengths, payloads, and track unevenness, the loads could realistically be modeled as being random in nature. The present study further considers that the reliability assessment must take into account a set of measurements made on the existing structure in its operating conditions and the availability of an acceptable mathematical model for the structure and the applied loads. The measurements are typically taken to include time histories of components of structural strains, displacements and (or) accelerations and to be, in general, spatially incomplete and noisy in nature. In certain applications, such as earthquake response of structures, it could be possible to measure external actions, while, in problems of vehicle structure interactions or wind loaded structures, the applied forces could remain unmeasured. The present study allows for the two contingencies of being able or not being able to measure the external forces. Furthermore, the mathematical model for the structural system itself could be nonlinear in nature and allowance is also made for possible imperfections in formulating the mathematical model. The parameters of the mathematical model are assumed to have been already identified through diagnostic measurements in a previous system identification step. The reliability metric could be defined in terms of performance functions which are solely dependent on measured response quantities, or, alternatively, and, more realistically, could involve a mix of measured and unmeasured response states. In either case, the problem on hand consists of updating the structural reliability model by assimilating the measured response. The present study develops a framework, based on the Kalman and particle filtering strategies, to tackle this problem. 
The basic motivation for undertaking this study has arisen due to the present authors’ involvement in a project aimed at condition assessment of existing railway bridges in India with a view to evaluate their ability to carry increased axle loads and faster and longer moving formations. The field work conducted as a part of this investigation has resulted in large amount of static and dynamic response data on structural strains, translations, rotations and accelerations under various loading conditions. One of the data set that has been collected in these studies has been the response of the bridge structure to ambient traffic load over a period of about 72-96 hours. Questions on the best utilization of such data towards establishing updated model for reliability of the structure that takes into account the measurements made, do not have clear answers and it is hoped that the issues addressed in the present study offer useful directions in this regard. As a prelude to the development of the ideas, we briefly review the relevant published literature.
2. A review of literature
The study of reliability of existing structures has been the subject of an early research monograph (Yao 1985) and the topic is also covered in individual chapters in the books by Ditlevsen and Madsen (1996) and Melchers (1999). Typically, the reliability analysis here involves Bayesian updating of postulated models for the mechanical behaviour of the structure, probability distribution functions (PDF-s) of the loads and structural resistance characteristics based on a set of measurements on the structure under controlled (and hence measured) loads or under (mostly unmeasured) ambient loads. Additional information based on non-destructive testing could also be available. The main sources of uncertainties here include: (a) noise in measurement of structural responses and applied actions, (b) imperfections in the mathematical model governing the system states, (c) imperfections in mathematical model that relates measured quantities to the system states, (d) assessment of present condition of the system that includes models for structural resistance allowing for the degradation that may have taken place during the completed life of the structure, and (e) mathematical model for external actions. Moreover, a step involving structural system identification typically precedes the reliability analysis which would have lead to optimal characterization of properties such as elastic constants, boundary conditions, mass, and damping properties.  
We briefly mention some of the studies in the existing literature in this area of research. The work of Shah and Dong (1984) addresses questions on strengthening existing structures to meet higher seismic demands and discusses a probabilistic framework to achieve this goal. Diamantidis (1987) explores the application of first order reliability methods to assess reliability of existing structures. The problem of combining system identification tools and reliability methods with knowledge-based diagnostics has been investigated by Yao and Natke (1994). Issues related to the development of reliability based condition assessment criteria have been examined by Ellingwood (1996), Mori and Nonaka (2000) and Val and Stewart (2001). The papers by Melchers (2001) and Catbas et al., (2008) provide overviews on current state of art in this area of research. Recently Ching et al., (2007) have used Kalman filters for estimating hidden states in randomly excited systems and have developed a simulation based strategy to update the reliability of existing structures based on sparse measurements. Their study employs importance sampling schemes and also includes a step involving identification of external forces. The reliability here is essentially defined with respect to an unobserved response of the structure exceeding a prescribed threshold during a loading episode that has already occurred. The major differences between the study by Ching et al., (2007) and the present study are that (a) we are focusing on updating the model for structural reliability against future episodes of loading, (b) the study takes into account nonlinear models for structural behavior and measurement models, and (c) the updating here is based on use of nonlinear filtering tools.
We consider linear/nonlinear multi degree of freedom (mdof) dynamical systems which are randomly excited. It is assumed the measurements on response of this structure have been made for a limited number of loading episodes and at a (possibly) sparse set of points. The study allows for the likely inability to measure time histories of applied actions. A random process model for the excitation that permits digital simulation of samples of excitation is assumed to be available whether or not samples of applied excitations are measured. In case external excitations are not measured, the study proceeds based on the basis of simulated samples from the assumed stochastic model for excitations. On the other hand, if samples of excitation are measured, the ensemble of future excitations is simulated using conditional simulation strategies. A validated mathematical model for the structure is also taken to be available. The study proposes that methods of dynamic state estimation, which employ Monte Carlo simulations, be used to assimilate the measured responses into the mathematical model. This in turn facilitates the simulation of sample realizations of the system states conditioned on the episodes of measurements. These estimated trajectories are subsequently used to obtain updated reliability models. 
For the case of linear state space models with additive Gaussian noises, it is shown that an approximate analytical solution to the problem of reliability model updating is obtainable. This is based on the application Poisson counting process model to the threshold crossings of the expected response conditioned on the measurements. For more general class of models, involving nonlinear process and measurement equations and (or) non-Gaussian noises, we propose a procedure that combines particle filtering strategy (to obtain updated system states) with a data based extreme value analysis (to develop models for extreme responses). Here it is postulated that the PDF of the highest response over a given duration agrees with one of the classical asymptotic extreme value PDF-s, namely, Gumbel, Weibull or Frechet distributions. This analysis involves two steps: (a) identification of basin of attraction to which the PDF of extremes of the estimated response belongs to; this, in turn, is based on hypothesis tests such as those discussed by Castillo (1988, attributed to Pickands and Galambos) or Hasofer and Wang (1992), and (b) estimation of parameters of the extreme value distribution ascertained in the previous step using limited number of samples of the estimated response. The proposed approach is exemplified by considering a few low dimensional dynamical systems subjected to stochastic excitations. The governing equations are taken to have cubic, tangent and (or) hysteretic nonlinear terms. The excitations considered include white and band limited random excitations. The efficacy of the results obtained is assessed with the help of limited large-scale Monte Carlo simulation studies.
Thus, the present study draws on knowledge base available in the existing literature in the areas of Kalman and particle filtering (Kalman 1960, Gordon et al., 1993, Tanizaki 1996, Doucet et al., 2000 and Ristic et al., 2004), extreme value analysis (Castillo 1988, Kotz and Nadarajah 2000), numerical solution of stochastic differential equations (SDE-s) (Kloeden and Platen 1992) and conditional simulation of random processes using techniques of dynamic state estimation (Vanmarcke and Fenton 1991, Kameda and Morikawa 1994 and Hoshiya 1995). It may be noted that particle filtering methods provide statistical solutions to problems of dynamic state estimation and are capable of treating nonlinear and (or) non-Gaussian state space models. Their applications in problems of structural engineering are recently being explored (Ching and Beck 2006, Manohar and Roy 2006, Sajeeb et al., 2007 Namdeo and Manohar 2007, and Ghosh et al., 2008). The application of statistical methods to estimate the PDF-s of extremes of random processes over specified duration is widely studied (Castillo 1988, Alves and Neves 2006). Hasofer and Wang (1992) have proposed a test statistic to test the hypothesis that a sample comes from a distribution in the domain of attraction of one of the classical extreme value distributions. This test has been used by Dunne and Ghanbari (2001) to investigate the extremes of response of nonlinear beams based on measured random response. Recently, Radhika et al., (2008) have investigated the problem of determining the model for extremes of nonlinear structural response using data based extreme value analysis and Monte Carlo simulation method.   

3. Problem statement
In this study we consider structural dynamical systems governed by the equation of the form
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Here a dot represents differentiation with respect to the time variable t; 
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corresponding to one episode of loading (such as passage of a train formation or occurrence of one earthquake event). The quantity
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vector of sequence of independent normal random variables with zero mean and covariance
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accounts for the measurement noise and imperfections involved in relating the measurement 
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. We begin by assuming that measurements on 
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, is, however, taken to be known. The problem on hand consists of determining the reliability of the system governed by equation 1 taking into account the measurements made as in equation 2. To facilitate this, we define a measure of system response denoted by 
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. A few examples for this function could be the reaction transferred to supports or von Mises’ stress metric or displacement at a critical point. We consider the problem of determining the posterior probability
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 have also been made, the problem on hand consists of determining the conditional PDF
[image: image40.wmf](

)

(

)

P|,;1,2,

smkk

PhytptkN

a

éù

=<=

ëû

L

. In the following sections we propose a scheme for solving this problem based on dynamic state estimation methods, data based extreme value analysis, and conditional simulation strategy. 
4. Models with time as a continuous variable 
The basic issues in determining 
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4.1 Linear systems
It is instructive to begin with the case of linear state space models with additive Gaussian noises. Equations 1 and 2 for this simplified situation can be recast into the following form 
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as formal derivatives of Brownian motion process, the above equations can be written as a pair of SDE-s as
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Here 
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In situations in which no measurements are available, it is well known that the transition probability density function (pdf) satisfies the Fokker-Planck-Kolmagorov (FPK) equation and there exists vast literature on strategies for its solution and characterization of response moments (see, Lin and Cai 1995, for example). When additional information on measurements becomes available, the FPK equation can be generalized and an equation for the evolution of 
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where 
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 The above equation is a stochastic partial differential equation which provides a sample solution of 
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 It is important to note that, if the last term on the right hand side is ignored (that is, when there are no measurements), the equation reduces to the FPK equation for 
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are governed by
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The above pair of equations forms the continuous time Kalman filter. 
In the problem of determination of 
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 If we restrict our attention to performance functions involving one of the system states
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 Since our interest lies in knowing the future reliability of the system conditioned on the measurements
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This can be considered as acceptable since 
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Based on this, we could now interpret equation 12 as representing the equation governing the updated dynamics of the system which can be used to investigate the structural behavior under future realizations of 
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Similarly, the equation for the random component 
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If we further assume p(t) to be stationary,  given that the dynamical system in equation 1 is damped, it may be expected that as 
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where 
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This approximation is expected to lead to a conservative result. An approximation to the PDF of 
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in the steady state, could be obtained by assuming Poisson’s models for the level crossing statistics of 
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, based on which, a Gumbel model for the extremes could be deduced (Nigam 1983). This calculation requires the determination of the joint pdf 
[image: image110.wmf](

)

(

)

ˆˆ

,

,;|,0

xixi

ZZ

pzztyt

tt

<£

&

&

%%

of 
[image: image111.wmf](

)

ˆ

xi

Zt

and 
[image: image112.wmf](

)

ˆ

xi

Zt

&

at time 
[image: image113.wmf].

t

 From equation (16) it is clear that, when p(t) is Gaussian, 
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would be jointly Gaussian. Based on this, further calculations on outcrossing rates could be carried out.
 4.2 Nonlinear systems
As one might expect, the analysis presented in the previous subsection no longer becomes tenable if the system dynamics is governed by nonlinear models. To clarify this, we consider the generalized version of equations 7 and 8 given by
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The functions 
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respectively. The Kushner-Stratonovich equation can now be deduced as (Maybeck 1982)
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The equations for 
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with
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Here it is important to note that the above equations are essentially formal in nature since the right hand sides in equations (22,23) contain higher order moments, such as, 
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which are yet not known. Any attempt to set up equations governing these higher order moments leads to an unending hierarchy of equations, which at no stage yield sufficient number of equations to obtain an acceptable solution. This difficulty can be overcome in an ad hoc manner by invoking closure approximations and details of a few such studies in existing literature are summarized by Maybeck (1982). It is interesting to note that such approaches do not seem to have been yet investigated in structural mechanics applications, although, in the context of traditional nonlinear random vibration problems, the closure approximations are widely studied (Ibrahim 1985, Bolotin 1984). In a similar vein, it may also be remarked that approximate solutions to equation 21 could also be developed based on method of weighted residuals/finite element procedures; such a line of research has not yet been pursued in structural engineering applications. Also, in dealing with the problem of determination of 
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, it is not apparent how the approximation developed for linear systems could be generalized. These issues are addressed in the present study by combining tools of Monte Carlo simulation based filters and results from extreme value analysis. A first step in developing the relevant details is to discretize, in time, the governing equations of motion.
5. Models with time as a discrete variable
In order to develop numerical solutions to the reliability problem on hand, it is required, as a first step,to obtain discretized version of the governing process equation 19. Following Kloeden and Platen (1992), we employ the order 1.5 strong Taylor’s scheme to achieve this. Thus, the discretized version of equation 19 is obtained as
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with
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Here 
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 evaluated at time tk. In the numerical work p is taken to be 4. The random variables appearing in the above equation have their origins in integrals of the type
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which are known as multiple stochastic integrals (Kloeden and Platen 1992). 

In the context of current sensing methods, the time variable in the measurement equation invariably occurs in discrete form. If we assume that the time instants at which the process equation is discretized and the time instants at which measurements are made coincide, the governing equations for dynamic state estimation can be cast in the standard form as
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In the discrete time setting, the required reliability is given by
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where 
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 is the time required for dissipation of transients. It needs to be emphasized here that the original problem of determining 
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In this formulation the measurements 
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 This clearly is consistent with the digital data acquisition that underlies measurements. On the other hand the replacement of 
[image: image160.wmf](

)

0

max,

ttT

hxtt

<<

éù

ëû

by 
[image: image161.wmf]{

}

0

max

kk

kkN

hx

<£

is an approximation arising from time discretization of the governing equations of motion. In the context of current state of art in filtering methods, it appears possible to avoid this replacement; see the works of   Beskos et al., (2006) and Fearnhead et al., (2008) who have developed state estimation schemes to treat continuous time process equations and discrete time measurements. Here the time instants between two successive measurement episodes are not discretized in the treatment of the process equation. While these developments indeed enhance the accuracy of state estimation problems, in the present study, however, we are not considering these refinements. We would like to point out that, in problems of structural mechanics, the equations of motion for structural behaviour (equation 1) are typically obtained only after discretizing the spatial variables using the finite element method. Here the choice of discretization intervals in space and time are well known to be governed by interrelated issues. Thus, discretization of time variable t in subsequent analysis can be deemed to be reasonable. 
6. Discrete time dynamic state estimation techniques
The objective of discrete time dynamic state estimation is to determine the multi-dimensional conditional probability density function 
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Based on the application of Bayes’ theorem and utilizing the Markovian property of response vector 
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Similarly, the evolution of the multi-dimensional posteriori pdf 
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For linear state space models and additive Gaussian noises, the above equations lead to the well known discrete time Kalman filter which provides an exact set of recursive relations for the evolution of the mean vector 
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broadly follows the steps as outlined in equations 14-18 for the case of continuous time models. These details are illustrated through numerical examples later in the paper.
For more general class of problems, involving nonlinear mechanics and non-Gaussian noises, equations 34 and 35 can be solved numerically using Monte Carlo simulations leading to a class of methods known as particle filters. The efficacy of these simulation tools are often enhanced by incorporating variance reduction schemes in the simulation steps. In the present study we consider the application of two versions of particle filtering namely, the sequential importance sampling (SIS) filter (Doucet 1998), which employs importance sampling to achieve variance reduction, and the bootstrap filter as developed by Gordon et al., 1993. It may be noted that the SIS filter is applicable for nonlinear process equations but linear measurement models, while, for applying the bootstrap filter, the process equation as well as the measurement equation could be nonlinear. The steps in implementing these filters are briefly summarized in Appendix A. These steps lead to the determination of 
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. These, in turn, serve as the starting point for estimating posterior PDF-s of extremes of system states based on a statistical analysis of samples of time histories of system response. 
7. Extreme value analysis of nonlinear system response
The analysis here is based on the assumption that 
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 can be approximated by 
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. It must be noted that the probability measure here is being assigned on the ensemble of response realizations corresponding to realizations of excitation p(t). The realization of conditional expectation
[image: image177.wmf]|

kk

a

, corresponding to a realization of p(t), is obtained by using one of the state estimation methods outlined in Appendix A. Thus, for a set of realizations of 
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, an associated ensemble of estimates of system states, denoted by 
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, can be obtained. This, in turn, can be utilized to obtain the ensemble of system performance function 
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. The problem of estimating the probability defined in equation 4 now could be addressed statistically based on the available ensemble
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. A brute force Monte Carlo simulation approach involving simulations with sufficiently large value of sample size 
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would, at least in principle, provide a means to solve this problem. However, if the probability measure of interest is small, this approach would require significant computational time. This difficulty could be mitigated, again, in principle, by adopting Monte Carlo simulations with suitable variance reduction schemes. In the present context, however, the method to choose the associated importance sampling density functions is not evident. We proceed further in this study by adopting a data based extreme value analysis procedure. This is based on the assumption that the peaks of system response lie in the basin of attraction of one of the classical extreme value distributions, viz., Gumbel, Frechet, or Weibull PDF. Based on the analysis of peaks in a few samples of system response we first identify the actual basin of attraction to which the peaks belong to. This is followed by a further analysis that estimates the parameters of the identified extreme value PDF. 
A requirement for the application of this procedure is that the process 
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can be treated as being stationary. The PDF of the peaks of the function 
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is taken to lie in the basin of attraction of Weibull, Gumbel or Frechet PDF-s. Based on a few samples of 
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, and using the hypothesis test as proposed by Hasofer and Wang (1992), we first identify the extreme value PDF to whose basin of attraction the PDF of extremes of 
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and estimate the parameters of the relevant extreme value PDF. The steps in implementing the Hasofer-Wang hypothesis test are as follows:

(a) Determine the number of extremes (
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(c) The value of the test statistic 
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 is compared with the upper and lower percentage points (WU and WL) given in Table 1 for the chosen significance level. 

(d) The domain of attraction is ascertained to be Gumbel or Weibull or Frechet at the chosen significance level, as follows:

(i) W > WU: accept the hypothesis that the data belongs to the domain of attraction of Weibull distribution.

(ii) WU >W >WL: accept the null hypothesis that the data belongs to the domain of attraction of Gumbel distribution.

(iii)  W < WL: accept the hypothesis that the data belongs to the domain of attraction of Frechet distribution.
Once the basin of attraction is identified, we statistically estimate the parameters of the associated extreme value PDF from the samples 
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.
8. Numerical illustrations
For the purpose of illustration, we consider a few linear/nonlinear oscillators and apply the procedure described in the preceding sections by using synthetically simulated measurement data. The range of nonlinear behaviour considered includes memoryless and hereditary nonlinearities. Measurements which could be nonlinear functions of the system states are considered. The models for external excitations include white as well as mean-square bounded random excitations. To validate the steps involved in extreme value analysis, a brute force Monte Carlo simulation strategy is adopted in which a large ensemble of performance functions is generated by assimilating the measurements into the relevant mathematical model using one of the filtering tools. Simulation results on unconditional PDF of extremes are also included for sake of reference; in a similar vein, where possible, the unconditional PDF-s for the extremes of the response based on level crossing theory are also provided. 
8.1 Linear single degree of freedom system subject to filtered white noise excitation
We first consider a linear single degree of freedom (sdof) system subject to filtered white noise excitation
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Here
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is the damping coefficient, 
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. The analysis in this section is based on the application of the Kalman filter for state estimation. By recasting the above equation as a SDE, the discretized equations of motion, with states
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with
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In the numerical work we take 
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8.1.1 Case 1 

Here we take measurements to be made on 
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The applied excitation F(t) is taken to be not measured and the performance function is defined in terms of permissible displacement of the system. It is assumed that standard deviations of  
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 are 0.0419m and 0.0762m/s, respectively. Figure 2 shows the plots of 
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 are shown in figure 3. It is indicative from these figures that 
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 have time varying means and random components which become stationary for large values of time. The time variation of the mean (figure 2) is of steady state nature;  that is, the function neither goes to zero nor grows to large values as time becomes large. Also shown in figure 2 are the measured displacement and velocity responses and 
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 obtained during the measurement step. It is apparent from this figure that the time varying mean components 
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arise out of measurements made on the system response. Results on PDF of extremes are obtained using the following four alternatives: (a) method 1: result based on level crossing approximation that employs analytical model for 
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 (see section 4.1); (b) method 2: result based on data based extreme value analysis (section 7); (c) method 3: Monte Carlo simulations on 5000 samples of 
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; (d) method 4: the unconditional extreme value PDF of x(t) when no measurements are available; this is obtained using a 5000 samples Monte Carlo simulations. The results are shown in figure 4. In implementing method 2, the 
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statistic was computed to be 641.106 
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and, when compared with the reference values in table 1, the domain of attraction of extremes was ascertained to be Gumbel at 5% significance level. The parameters of Gumbel distribution was estimated using 500 samples of
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. Figure 5 shows the influence of sample size in estimation of parameters of Gumbel distribution and it may be inferred that a sample size of 500 provides satisfactory estimate of model parameters. The broad agreement between results from methods 1, 2 and 3 can be discerned from figure 4. More refined results from level crossing theory can be obtained by considering effects due to one step memory of level crossings and correction due to clumping of level crossings in realization of narrow band processes. Similarly, results from Monte Carlo simulations could be improved by using larger number of  samples.
8.1.2 Case 2

This case is similar to Case 1 except that here we assume that the sample time history of applied force F(t) is also measured. Further samples of F(t) are now obtained using a conditional simulation strategy. The process equation here remains similar to equation 40 but the measurement equation reads
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The noise processes 
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are taken to be zero mean, independent Gaussian sequences with standard deviation of 1.7225N, 0.0427m and 0.0856m/s, respectively. The results on extreme value PDF is obtained using data based extreme value analysis (section 7). The analysis in this case yielded Gumbel model for the PDF 
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 at 5% significance level. Figure 6 compares resulting Gumbel PDF with corresponding results for the case when F(t) was not measured (previous section). 

8.1.3 Case 3

As has been noted already, one of the assumptions that has been made is that the sampling interval used in measurements and step size used in discretizing the governing SDE-s coincide. This assumption has simplified the presentation of the details of formulary. However, in implementing the method, this is not a restrictive assumption. To illustrate this, we consider here the problem in section 8.1.1 (case 1) with the time step in measurement equations being twice the step size sued for discretizing the governing SDE. Figure 7 compares results on extreme value PDF of displacement 
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with corresponding result from Case 1. Both these results are based on data based extreme value analysis.
8.2 Duffing’s system with 2-dofs
Here we consider the system shown in figure 8. When the springs are taken to have cubic force-displacement characteristics, the governing equation for the system can be obtained as
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Here 
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are externally applied forces that are modeled as a pair of independent, zero mean, stationary, Gaussian random processes with auto-power spectral density functions (psdf-s) and auto-covariance functions (acf-s) given respectively by
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Clearly, the random processes 
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are mean-square bounded and, also, it can be verified that the processes are differentiable in the mean-square sense to any desired order. The functions 
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. We assume that the system starts from rest. Also, we take that, when the nonlinearities are absent, the damping matrix is classical so that the two modes will have damping ratios of 
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.  By interpreting equation 44 as a set of Ito SDE-s with state vector given by 
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with 
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The random variables 
[image: image256.wmf]and;1,2

ii

ZWi

DD=

are as defined in equation 26. In further work we take that the samples of 
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are simulated using a truncated Fourier representation (Soong and Grigoriu 1993) as
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where 
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. In the first step of the present analysis, we need to assimilate the measured data into the mathematical model for given realizations of 
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8.2.1 Case 1
Here we consider the system in equation 46 and take the measurement model to be given by
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. The measurement noise is assumed to have a standard deviation of 0.0310 m. Thus, in this example, we have nonlinear process equation and linear measurement model with additive Gaussian noises. The filtering problem here is not amenable for solution via the Kalman filter, while the SIS filter and the bootstrap filters are applicable. We consider the problem of estimating the extreme value PDF of 
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 using the method described in section 7. In implementing the filters, 200 particles were used for SIS and bootstrap filters. Figure 9 shows the time variation of  
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. These estimates are obtained using 5000 sample Monte Carlo simulations. Based on the results in figures 9 and 10, it may be inferred that the process 
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has a time varying mean and a random component that becomes stationary as time becomes large. Using the Hasofer and Wang hypothesis test on peaks in 
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, the domain of attraction of the extremes was determined to be Gumbel at 5% significance level 
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. The parameters of the PDF-s were estimated using 1000 samples of 
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 and the resulting PDF-s for displacement response are shown in figure 11. For sake of reference the unconditional 
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using 5000 sample brute force Monte Carlo simulation is also shown on this figure. It may be noted that the estimation of 
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based on brute force Monte Carlo approach in this case requires prohibitive computational effort and this has not been attempted here. 
8.2.2 Case 2
Here we consider the system as in the case 1(section 8.2.1) except that we now consider the reaction transferred to the left support as the quantity being measured. Thus the measurement equation is obtained as
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 where, standard deviation of  
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 is 31.1134N. This would mean that both the process and measurement equations here are nonlinear in nature and, consequently, we employ the bootstrap filter to estimate the hidden variables. Again, we focus attention on estimating the extreme value PDF of 
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had a time varying mean and a random component that can be taken to be stationary for large times. The W-statistic of the Hasofer-Wang test on data on 
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leading to the acceptance of the Gumbel model for the extremes at 5% significance level. Following the estimation of parameters of the Gumbel PDF using 1000 samples of estimates of
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, the conditional PDF of extremes of 
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is obtained and this is shown in figure 12 along with the unconditional 
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estimated using 5000 samples. 

8.3 Hysteretic nonlinear mdof system under white noise excitations
Here we consider systems with hereditary nonlinearities and demonstrate how measurements from more than one sensor could be assimilated within particle filtering strategy. Towards realizing this goal we again consider the system shown in figure 8 with the modification that the spring 
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 is now modeled as possessing memory dependent nonlinear characteristics fashioned after Bouc’s model (Wen 1976). The springs 
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are taken to possess cubic force displacement characteristics. Thus, this system can be considered to be archetypal of a structure with both geometric and material nonlinearities.  The excitations
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are modeled as a pair of zero mean, stationary, Gaussian random processes with auto-psd-s and acf-s given respectively by 
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We obtain samples of 
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as steady state outputs of linear systems driven by white noise inputs. Accordingly, we get the governing equations as
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Here 
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is an internal state variable which imparts memory dependence to the force displacement characteristic of spring 
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 and, by assigning different values to the model parameters
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. We now interpret equation 50 as an Ito SDE with the state vector given by 
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and subsequently obtain the discretized set of equations as: 
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with
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The random variables 
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. In the first step of the solution procedure, we need to assimilate the measurements for given realizations of the processes 
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. This is achieved in the numerical work by assimilating measurements for fixed values of numerically simulated
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.  It may also be noted that the right hand side of the above equations contain Dirac’s delta functions. Their presence is indicative of the fact that the drift term in equation 50 has modulus function of the form 
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, has a measure zero of occurrence, its occurrence is ideally required to be detected when the solutions are sought in the strong form. The theory behind detection of such events, in the context of SDE-s, appears to be still an open area of research and we have not addressed this issue in our work. Therefore, in the numerical work, we either altogether drop these terms or, alternatively, replace the Dirac delta function by a Gaussian probability density function with zero mean and arbitrarily small standard deviation. It was observed in the numerical studies that the estimates of the states and the estimate of parameter were not notably influenced by this choice. In the numerical work we take 
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. The measurements are assumed to be made on 
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The question of estimating the conditional extreme value PDF of 
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 (i.e., displacement at 2nd dof) over duration of 13.6s is considered. The standard deviations of the two measurement noises are taken to be 0.0037m and 0.3741N, respectively. The problem on hand is tackled using bootstrap filter with 200 particles. The plot of 
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are shown in figures 13 and 14. The results in these figures again indicate that 
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 could be construed as a random process with time varying mean and a random component that becomes stationary as time becomes large. Based on the Hasofer and Wang test, the hypothesis that the domain of attraction of 
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obtained using 800 samples. For sake of comparison, the results on PDF of extremes of 
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are also provided when measurements are taken to include only displacement (equation 53) and only the reaction transferred to the left support (equation 54). Clearly, the estimate of the conditional extreme value PDF, and hence the updated reliability of the system, is significantly influenced by the details of measurements made.
8.4 System with tangent stiffness under white noise excitation

In the previous examples it was observed that the Gumbel model emerged as the acceptable PDF for modeling the extremes. This may not always be the case.  In order to illustrate this we consider an sdof system with tangent stiffness with the governing process equation of the form 
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where 
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 is the damping coefficient and 
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is a frequency-like parameter.  The motion of such system is bounded between (-d0,d0) and, consequently, Gumbel models are unlikely to be acceptable for the extremes of displacement response especially for large levels of excitation. In the present study we consider the excitation 
[image: image337.wmf](

)

pt

also to be a white noise and obtain the governing discretized equations for the system states 
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In the rest of the formulation the following notations are used:
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The response of this system under white noise excitations has been studied earlier by Klein (1964) by using Fokker-Planck equation approach and the results on the steady state pdf of 
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for different values of system parameters are shown in figure 16. The bounded nature of system response is clearly evident from this figure. This may also be inferred from the phase plane plot of sample of the system response shown in figure 17.  It can be shown that as 
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 the pdf of the displacement approaches a uni-modal Gaussian-like distribution, and, as 
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 it approaches a near rectangular distribution (figure 16). It may thus be expected that the extremes of the displacement response here could be Gumbel for large values of 
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 In the present study we consider the problem of estimating the extreme value PDF of 
[image: image346.wmf](1)

|

kk

a

(i.e., displacement) when measurements have been made on the velocity response
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. As in the previous example, we note that the random variables 
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originate from the excitation p(t) and, in the first step of the solution procedure, we assimilate the measurements for fixed values of 
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 had a time varying mean and 
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 could be approximated as being weakly stationary. In the numerical work it is assumed that 
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; the standard deviation of the measurement noise and is taken to be 1.0908 m/s. The state estimation problem here is tackled using bootstrap filter with 200 particles. The results of Hasofer and Wang hypothesis test on 
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, depending on the samples used, favored the possibility that the domain of attraction of the extremes of 
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 to be Gumbel or Weibull. Consequently, based on a sample of 800 realizations of extremes of 
[image: image360.wmf](1)

|

kk

a

over 25 s, both Gumbel and Weibull models were fitted for the extreme value PDF and these results are shown in figure 18. For sake of reference, the estimate of unconditional pdf of extreme of 
[image: image361.wmf](

)

ut

over 25 s using 5000 samples Monte Carlo simulation is also shown in this figure.
9. Discussion and closing remarks
Monte Carlo simulation based Bayesian filtering tools offer effective framework to assimilate measured data into postulated mathematical models for existing structures. These tools have wide ranging capabilities that include capability to treat structural nonlinearities, nonlinear measurement models, imperfections in mathematical models and measurements, non-Gaussian nature of uncertainties, and spatially incomplete measurements. They have great promise for application in the area of structural health monitoring - a potential that is yet to be fully explored in the field of structural engineering research. 
The present paper utilizes these tools, in conjunction with statistical methods for extreme value analysis, to develop a strategy to update the time variant reliability of existing nonlinear dynamical systems based on assimilation of noisy measurements. The limit states considered in the study depend on measured and (or) unmeasured response quantities and are taken to be linear functions of system states. The study treats the governing differential equations as a set of stochastic differential equations and employs Ito-Taylor expansion to discretize the process equations. This results in acceptable modeling of strong forms of response random processes – a feature that is crucial for application of data based extreme value analysis. The external excitations are modeled as random processes with known model parameters. This enables simulation of ensemble of these excitations. When the excitations are also measured, the samples of excitations are obtained based on conditional simulations. The illustrative examples considered include systems with geometric and (or) material nonlinearities. The models for random excitations considered include filtered white noise models as well as excitations that are differentiable to any desired order. 
The following are the main findings of this study:

1. The conditional expectation of the response (
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) can be viewed as a random process with each of its realization corresponding to a realization of the external forces. This random process is shown to have a time varying mean and a random component which can be approximated as being weakly stationary. The time varying nature of the mean essentially originates from the assimilation of the measured responses.
2. A conservative bound on the updated model for the PDF of extreme response can be obtained by making the assumption
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3. For linear state space models with additive Gaussian noises an approximate analytical solution to the problem of reliability model updating can be obtained by using theory of level crossings of Gaussian random processes.

4. Gumbel models for extremes are found to be generally acceptable although the illustration in section 8.4 presents an example in which response is bounded and hence Weibull models for extremes become appropriate. 
The present study has involved illustrations in which the measured data are synthetically simulated. While this strategy helps to demonstrate the acceptable performance of the proposed methods, it is clearly required to test the methods by applying them to laboratory and field applications. This also calls for treatment of more elaborate models for structural behaviour based, for example, on finite element method. These aspects of the work are being currently researched upon by the present authors. The present study has assumed that the user would be able to specify the numerical values for the covariance matrices of process and measurement noises which appear in the state estimation problem. The selection of these covariances is indeed a practical problem and the success of the dynamic state estimation technique depends upon the correct tuning of these parameters. This calls for engineering judgment on confidence that can be placed on the mathematical model, assessment of electronic noise in the sensor and accuracy of sensor calibration. In principle, these parameters could also be identified in the identification step which is assumed to precede the considered problem of reliability model updating. This, again calls for further work.
References
1. I F Alves and C Neves, 2006, Testing extreme value conditions - an overview and recent approaches, International Conference on Mathematical Statistical Modeling in honor of E Castillo, June 28-30, 1-16.
2. A Beskos, O Papaspiliopoulos, G Roberts and P Fearnhead, 2006, Exact and computationally efficient likelihood-based inference for discretely observed diffusion process, Journal of Royal Society, B, 68(2), 1-29.
3. V V Bolotin, 1984, Random vibrations of elastic systems, Martinus Nijhoff Publishers, Hague.

4. E Castillo, 1988, Extreme value theory in engineering, Academic Press, Boston.
5. F N Catbas, M Susoy, and D M Frangopol, 2008, Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data, Engineering Structures, 30, 2347-2359. 

6. J Ching, J L Beck and K A Porter, 2006, Bayesian state and parameter estimation of uncertain dynamical systems, Probabilistic Engineering Mechanics, 21, 81–96.
7. J Ching and J L Beck, 2007, Real-time reliability estimation for serviceability limit states in structures with uncertain dynamic excitation and incomplete output data, Probabilistic Engineering Mechanics 22, 50–62.

8. D Diamantidis, 1987, On the Reliability Assessment of Existing Structures, Engineering Structures, 9, 177-182. 
9. Ditlevsen and H O Madsen, 1996, Structural reliability methods. John Wiley & Sons, Chichester.
10. A Doucet, 1998, On sequential simulation-based methods for Bayesian filtering, Technical report CUED/F-INFENG/TR.310 (1998), Department of Engineering, University of Cambridge, UK.

11. A Doucet, S Godsill and C Andrie, 2000, On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 0, 197–208.
12. J F Dunne and M Ghanbari, 2001, Efficient extreme value prediction for nonlinear beam vibrations using measured random response histories, Nonlinear dynamics, 24, 71-101. 

13. B Ellingwood, 1996, Reliability-based condition assessment and LRFD for existing structures, Structural Safety 18(2), 67-80. 
14. P Fearnhead, O Papaspiliopoulos and G Roberts, 2008, Particle filters for partially observed diffusions, Journal of Royal Statistics, B, 70(2), 755-777.

15. S Ghosh, C S Manohar and D Roy, 2008, Sequential importance sampling filters with a new proposal distribution for parameter identification of structural systems, Proceedings of Royal Society of London, A, 464, 25-47.
16. N J Gordon, D J Salmond and A F M Smith, 1993, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings. F140: 107-113.
17. A M A Hasofer and Z Wang, 1992, A test for extreme value domain of attraction, Journal of the American Statistical Association, 87(417), 171-177.
18. M Hoshiya, 1995, Kriging and conditional simulation of Gaussian field, Journal of Engineering Mechanics, 121(2), 181-186.
19. R.A. Ibrahim, 1985, Parametric Random Vibration, John Wiley, New York.
20. R E Kalman, 1960, A new approach to linear filtering and prediction problems, Transactions of ASME, Journal of Basic Engineering, 82 (Series D), 35-45.

21. H Kameda and H Morikawa, 1994, Conditioned stochastic processes for conditional random fields, Journal of Engineering Mechanics, 4, 855-875.
22. G H Klein, 1964, Random excitation of a nonlinear system with tangent elasticity characteristics, Journal of Acoustical Society of America, 36(11), 2095-2105.
23. P E Kloeden and E Platen, 1992, Numerical solution of stochastic differential equations, Springer, Berlin.

24. S Kotz and S Nadarajah, 2000, Extreme value distributions, Imperial College Press, London.
25. Y K Lin and C Q Cai, 1995, Probabilistic Structural Dynamics: Advanced Theory and Applications, McGraw Hill, New York.
26. J A Lechner, E Simiu, and N A Heckert, 1993, Assessment of ‘peaks over threshold’ methods for estimating extreme value distribution tails, Structural Safety, 12, 305-314.

27. C S Manohar and D Roy, 2006, Nonlinear structure system identification using Monte Carlo filters, Sadhana, Academy Proceedings in Engineering, Indian Academy of Science, 31(4), 399-427.
28. R E Melchers, 1999, Structural reliability analysis and prediction, Second edition, John Wiley, Chichester.
29. R E Melchers, 2001, Assessment of existing structures-approaches and research needs, Journal of Structural Engineering ASCE, 127(4), 406-411.
30. Y Mori and M Nonaka, 2001, LRFD for assessment of deteriorating existing structures, Structural Safety, 23, 297-313.

31. V Namdeo and C S Manohar, 2007, Nonlinear structural dynamical system identification using adaptive particle filters, Journal of Sound and Vibrations, 306, 524-563.
32. N C Nigam, 1983, Introduction to random vibrations, MIT Press, Cambridge.
33. A Naess and P H Clausen, 2001, Combination of peaks-over-threshold and bootstrapping methods for extreme value prediction, Structural Safety, 315-330.
34. B Radhika, S S Panda and C S Manohar, 2008, Time variant reliability analysis using data based extreme value analysis, Computer Modeling in Engineering and Sciences, 27(1-2),79-110.
35. B Ristic, S Arulampallam and N Gordon, 2004, Beyond the Kalman filter: Particle filters for tracking applications, Artech House, Boston.
36. R Sajeeb, C S Manohar and D Roy, 2007, Control of nonlinear structural dynamical systems with noise using particle filters, Journal of Sound and Vibration, 306, 25, 111-135. 
37. H C Shah and W M Dong, 1984, Reliability assessment of existing buildings subjected to probabilistic earthquake loadings, Soil Dynamics and Earthquake Engineering, 3(1), 35-41. 
38. A F M Smith and A E Gelfand, 1992, Bayesian statistics without tears: a sampling-resampling perspective. American Statistician, 46, 84-88.
39. T T Soong and M Grigoriu, 1993, Random vibration of mechanical and structural systems, PTR Prentice-Hall, New Jersey.
40. H Tanizaki, 1996, Nonlinear filters: estimation and applications 2nd edition, Springer Verlag, Berlin.
41. D V Val and M G Stewart, 2002, Safety factors for assessment of existing structures, ASCE Journal of Structural Engineering, 128(2), 258-265.

42. E H Vanmarcke and A G Fenton, 1991, Conditional simulation of local fields of earthquake ground motion, Structural Safety, 10(1-3), 247-264.
43. Y K Wen, 1976, Method for random vibration of hysteretic systems, ASCE Journal of Engineering Mechanic, 102(2), 249–263. 
44. J T P Yao, 1985, Safety and reliability of existing structures. Pitman, Boston.
J T P Yao and H G Natke, 1994, Damage detection and reliability evaluation of existing structures, Structural Safety, 15, 3-16.

45. Appendix A: State estimation algorithms used in the study.
A.1 Kalman filter

The Kalman filter provides a Gaussian estimate for the filtering pdf 
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for linear-Gaussian state space models obtained as simplified form of equations 28 and 29 as
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The sizes of various quantities appearing in the above equation are as follows: 
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. The filtering algorithm provides a set of recursive relations for the evolution of the mean 
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given by (Hwang and Brown 1997)
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Here a superscript ‘-’ indicates the prior estimate; 
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is the Kalman gain matrix and I is an 
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The estimate of conditional mean 
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 is obtained. From the expression for conditional mean in equation A4 the quantities 
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 can be shown to be given by 
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In the above equation 
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denotes expectation across the ensemble of excitation 
A.2 Sequential importance sampling (SIS) filter

When the dynamic state estimation problem is characterized by nonlinear process equation, linear measurement model and additive Gaussian process and measurement noises, the estimation of 
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could be based on the sequential importance sampling filter that employs an ideal importance sampling density function as proposed by Doucet (1998). Thus, equations 28 and 29 here have the form
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The sizes of various quantities appearing in the above equation are as follows: 
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 We focus attention on evaluating the expectation of the form
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Here 
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. The basic idea here consists of choosing an importance sampling pdf, denoted by 
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 In this case the integral in equation A12 can be  written as
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it can be shown that 
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with the new weights 
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If one selects the importance sampling density function of the form
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it would then be possible to compute the importance weights in a recursive manner. To see this, note that 
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One of the difficulties in implementing this algorithm in practice is that after a few time steps, most weights become small in comparison to a few which become nearly equal to unity. This implies that most of the computational effort gets wasted on trajectories which do not eventually contribute to the final estimate. This problem is widely discussed in the existing literature and one way to remedy this problem is to introduce the notion of an effective sample size given by
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It may be noted that if all weights are equal, 
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it can then be shown that the ideal importance density function is a normal density function with mean 
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It may be noted that 
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 denotes that x is a vector of normal random variables with mean vector a and covariance matrix B. When dealing with more general forms of process and measurement equations, as in equations 28 and 29, more elaborate strategies such as the one proposed by Ghosh et al., (2008) could be used.
The following steps are adopted to implement the SIS filter: 
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In implementing this method it is assumed that 
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A.3 Bootstrap filter

Here we consider the governing equations in their general form (equations 28 and 29) and permit nonlinearity in both process and measurement equations. The noises could be additive and (or) multiplicative and they could be non-Gaussian as well. One alternative to deal with this class of problems is to employ the bootstrap filtering method as developed by Gordon et al., (1993). This method is based on an earlier result by Smith and Gelfand (1992). This result can be stated as follows: suppose that samples 
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The central contention in the formulation of this algorithm is that the samples 
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[image: image476.wmf](

)

Gx

 identified with 
[image: image477.wmf])

|

(

1

:

1

-

k

k

y

x

p

 and L(x) with 
[image: image478.wmf])

|

(

k

k

y

x

p

. This method has the advantage of being applicable to nonlinear process and measurement equations, and, non-Gaussian noise models. It is also important to note that the samples in this algorithm naturally get concentrated near regions of high probability densities. 
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Figure 1. Sample realization of a random process with the extremes marked.
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(b)

Figure 2. Example in section 8.1.1; Expectation of conditional mean of system responses (a) displacement (b) velocity; 
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(b)

Figure 3. Example in section 8.1.1; Variance of conditional mean of system responses (a) displacement; (b) velocity.
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Figure 4. Example in section 8.1.1; Conditional PDF of extremes of the hidden displacement variable using methods 1-4. 
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(a)
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(b)

Figure 5. Example in section 8.1.1; Estimation of parameters of Gumbel distribution with different sample sizes; (a) parameter
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Figure 6. Example in section 8.1.2; Conditional PDF of extremes of the hidden displacement variable; Case: 1 – when the force is not measured (section 8.1.1); Case: 2 - when the force is measured (section 8.1.2).
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Figure 7. Example in section 8.1.3; Conditional PDF of extremes of the hidden displacement variable; Case: 1 – when the force is not measured (section 8.1.1); Case: 3 - when the measurements are sampled at twice the discretization time interval of the process equation (section 8.1.3).

Figure 8. System considered in examples 8.2 and 8.3. 
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Figure 9. Example in 8.2.1; Expectation of conditional mean of displacement response 
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Figure 10. Example in section 8.2.1; Correlation coefficient of random component of conditional mean of displacement response 
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Figure 11. Example in section 8.2.1; Conditional PDF of extremes of the hidden variable 
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Figure 12. Example in section 8.2.2; Conditional PDF of extremes of the hidden variable 
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Figure 13. Example in section 8.3; Expectation of conditional mean of displacement response 
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Figure 14. Example in section 8.3; Correlation coefficient of random component of conditional mean of displacement response 
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Figure 15. Example in section 8.3; Conditional PDF of extremes of the hidden variable 
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Figure 16. Example in section 8.4; The exact pdf of the displacement in the steady state for system under white noise excitation (based on Klein 1964).
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Figure 17. Example in section 8.4; Phase plane plot of sample response of the system under white noise excitation.
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Figure 18. Example in section 8.4; Conditional PDF of extremes of the hidden variable 
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Table.1 Upper and lower percentage points for W in the Hasofer and Wang hypothesis test (from Hasofer and Wang 1992)
	Sample size

k
	Percentage level

	
	Lower tail (WL)
	Upper tail (WU)

	
	0.01
	0.025
	0.05
	0.10
	0.10
	0.05
	0.025
	0.01

	13
	333.8
	395.6
	457.7
	538.4
	1599.5
	1827.5
	1998.5
	2204.6

	14
	305.6
	361.2
	416.3
	489.6
	1406.3
	1589.4
	1749.6
	1934.4

	15
	288.1
	339.4
	389.3
	456.5
	1275.6
	1450.4
	1596.2
	1768.1

	16
	272.8
	321.3
	368.8
	431.5
	1183.3
	1334.9
	1469.4
	1629.5

	17
	258.6
	306.0
	349.6
	407.7
	1095.0
	1234.7
	1357.9
	1508.3

	18
	247.4
	290.2
	332.0
	386.5
	1017.1
	1143.9
	1259.7
	1397.7

	19
	237.1
	277.6
	316.6
	368.5
	950.4
	1064.5
	1171.1
	1301.4

	20
	226.9
	265.4
	302.5
	350.7
	888.8
	997.3
	1096.5
	1220.9

	21
	217.7
	255.0
	289.1
	333.6
	836.0
	938.1
	1027.2
	1145.8

	22
	210.1
	244.9
	278.3
	321.0
	787.3
	881.9
	968.7
	1077.2

	25
	189.4
	219.3
	248.8
	285.4
	672.1
	747.4
	821.1
	910.8

	30
	165.0
	189.2
	212.6
	241.7
	535.5
	593.6
	650.7
	719.9

	40
	131.7
	149.5
	166.1
	186.4
	377.1
	413.6
	451.5
	497.0

	50
	110.4
	124.1
	136.6
	151.8
	289.5
	316.5
	340.2
	371.1

	60
	96.4
	106.9
	116.6
	128.8
	232.9
	253.8
	270.8
	293.3

	80
	76.5
	84.2
	91.0
	98.9
	168.4
	179.9
	190.7
	205.5

	100
	63.6
	69.2
	74.3
	80.2
	129.6
	138.4
	146.4
	155.5

	200
	35.4
	37.6
	39.9
	41.9
	59.4
	62.2
	64.8
	68.1

	500
	16.3
	16.9
	17.4
	18.0
	22.6
	23.2
	23.8
	24.5
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