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Abstract: While particle filters are powerful tools for state or parameter estimations of highly nonlinear dynamical systems,
they become quite inefficient for higher dimensional systems as simulations over large ensembles of samples are required to
obtain a desirable accuracy in the estimations. Rao-Blackwellization is a technique that exploits the structure of the model to
analytically marginalize a subset of the state vector so as to reduce the dimension of the state space over which particle filters
need to be applied. In this study, a novel procedure for implementing Rao-Blackwellization for state and parameter estimations
of uncertain dynamical systems of engineering interest is proposed. The strategy is based on decomposing the system to be
estimated into mutually coupled linear and nonlinear substructures and then putting in place a framework to account for
coupling between the substructures. While particle filters are applied to the nonlinear substructures, estimation of linear
substructures proceeds using a bank of Kalman filters. Numerical illustrations are provided for state/ parameter estimations
of a few linear and nonlinear oscillators with noise in both the process and measurements. The proposed procedure is notably
efficient in state and parameter estimations of many engineering systems with localized nonlinearity.
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1. INTRODUCTION

Estimation of state and parameters of uncertain dynamical
systems is of distinctive significance in many engineering
applications. For instance, feedback control applications
of dynamical systems require the states of the system to
be estimated from the available noisy measurements.
Similarly, performance evaluation and health monitoring
of mechanical and structural systems require estimation
of both states and parameters of the system. For systems
described by linear-Gaussian state space models, the
classical Kalman filter provides the optimal estimate. For
nonlinear state estimation, there are two main classes of
methods, viz., the suboptimal filter strategies, such as
those based on the extended Kalman filter (EKF) or its
variants [1,2] and those based on Monte Carlo
simulations, popularly known as particle filters [3-7].
Unlike the EKF, which is limited to capturing a Gaussian
approximation of the states using the first two moments,
the particle filters obtain the conditional probability
density function (pdf) through a set of random particles
(simulated trajectories at discrete time instants) with
associated weights. Hence, they are enabled to treat
system nonlinearity and thus the non-Gaussian nature of

the response and even non-Gaussian nature of noises.
Different versions of particle filters, their development
and potential applications can be found in [8,9]. However,
despite the stated advantages, particle filters become
increasingly inefficient with increasing system
dimensionality as a large number of samples may have
to be simulated in order to appropriately represent the
conditional pdf. However, if the model has a tractable
(linear) substructure with the associated variables
amenable for treatment with the Kalman filter, the particle
filter may only be applied to a reduced state space
corresponding to the complimentary (possibly nonlinear)
substructure. Other than an improvement in the
computational efficiency, this has also an attendant
benefit of a reduced variance of the estimator as a direct
consequence of Rao-Blackwell theorem. The essence of
this theorem is that, given a pair of random variables X
and Y, we have the conditional inequality var {E[h(X) |
Y]} ≤ var [h(X)] (var{.} denotes variance and E[.] the
mathematical expectation) [10]. In the context of Monte
Carlo simulation, this reflects a basic principle - one
should carry out analytical computations as much as
possible [11]. Combining particle filters with analytical
computations (through Kalman filters) is generally
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referred to as Rao-Blackwellization [10, 11], resulting
in Rao-Blackwellized Particle filters (RBPF) [8, 12]. It
has been shown that Rao-Blackwellization, if possible,
reduces the risk of divergence in state estimation
problems, even when a small number of samples are
employed [13].

Particle filters are widely used in navigation and
target tracking applications. Their use in state/parameter
estimation of mechanical systems has however not been
attempted until recently. Manohar and Roy [14] have
demonstrated the potential of particle filters for parameter
identification of noisy nonlinear dynamical systems.
Ching et al. [15, 16] have implemented particle filters to
estimate the states and parameters of linear and nonlinear
systems with time varying parameters. Li et al. [17] have
used it for identifying nonlinear hysteretic systems. The
RBPF has been used for different applications such as
target tracking [18], navigation [13], fault diagnosis [19]
and mobile robotics [20]. The existing forms of the RBPF
crucially depend on a specific form of coupling between
the two subsystems with information cascading from only
one subsystem to the other, with no mutual interactions.
Unfortunately, with this restriction in place, the potential
of the RBPF in the context of state and parameter
estimations of mechanical/structural systems cannot be
entirely realized.

More often than not, engineering structures are
designed to behave as linear systems and hence a
substantially major part of the structure is likely to remain
strictly linear even under extreme loading conditions. In
other words, the nonlinearity in most nonlinear dynamical
systems of engineering interest is spatially localized. To
cite instances, mention may be made of nonlinear joints
in an otherwise linear structure, base isolated structures
or the localized plastic deformation of a mechanical/
structural system. Thus, given that linear substructures
(with the corresponding vector fields being linear in the
state variables) may be readily traced out in mathematical
models of most mechanical/structural systems, it is
natural to ask if an adaptation of the RBPF is possible in
the state and parameter estimations of these systems.
Even if the system is decomposable into linear and
nonlinear substructures, we again emphasize that a direct
application of the RBPF is not possible owing to the two-
way nature of the coupling existing between the
substructures of engineering dynamical systems. In the
present paper, we propose a novel variation of the RBPF
that indeed enables state and parameter estimations of
mechanical systems (e.g. oscillators). Following this, we

also demonstrate the performance of the method using a
few linear and nonlinear mechanical oscillators with
uncertainty in both the process and measurements. The
governing stochastic differential equations (SDE-s) of
these oscillators are discretized using explicit forms of
Ito-Taylor expansions. The numerical results adequately
bring forth the superiority of the novel RBPF over
standard particle filters in state and parameter estimations
of such systems.

2. THE STATE ESTIMATION USING PARTICLE FILTERS

Let x
k
 ∈  ℜ nx denote the state vector of a dynamical system

and y
k
 ∈  ℜ ny the instantaneous measurement vector at

time instant t
k
. From the governing SDE-s for the

dynamical system as well as the observation process, the
discrete model of the system may be obtained as:

x
k+1

 = f
k
 (x

k
, w

k
) (1a)

y
k
 = h

k
(x

k
, v

k
)  k = 1, 2, ..., N

k
(1b)

Here : x w xn n n
kf ℜ × ℜ → ℜ and : yx v nn n

kh ℜ × ℜ → ℜ are

linear/nonlinear functions of the state, wn
kw ∈ ℜ and

vn
kv ∈ ℜ are sequence of zero-mean mutually independent

random variables, independent of current and past states.
It may be emphasized that x

k
 would possess strong

Markov properties, since the state vector sequence is
derived through a strong discretization of the governing
SDE-s and that the conditional pdfs p(x

k
 | x

k–1
) and

p(y
k
 | x

k
) are deducible from Eqs. (1). For convenience,

we introduce the following sequences of random

variables: { }0: 0
:

k

k i i
x x =

= and { }1: 1
:

k

k i i
y y =

= . The objective

is to estimate the conditional pdf 0: 1:( | )k kp x y  recursively

in time or, more conveniently, only the marginal pdf

1:( | )k kp x y  and thus find the expectation of a function
ψ(x

k
) as:

1:( ) [ ( )] ( ) ( | )k k k k kI E x x p x y dxψ = ψ = ψ∫ (2)

The integral in Eq. (2) is multi-dimensional and its
analytical evaluation is generally not possible. However,
when process and measurement equations are linear and
noises are Gaussian and additive, Kalman filter provides
the exact (optimal) solution. However, for a more general
case, a formal solution is derivable as follows (Gordon
et al., [3]). First obtain:

1: 1 1 1: 1 1 1 1 1: 1 1( | ) ( , | ) ( | ) ( | )k k k k k k k k k k kp x y p x x y dx p x x p x y dx− − − − − − − −= =∫ ∫
(3)
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This equation represents the prediction equation.
When the measurement vector y

k
 becomes available, one

may derive the updation equation based on Bayes’
theorem as follows:

1: 1: 1 1: 1
1:

1: 1: 1 1: 1

( , ) ( | ) ( | ) ( | ) ( | )
( | )

( ) ( | ) ( | ) ( | )
k k k k k k k k k k

k k
k k k k k k k k

p x y p y x p x y p y x p x y
p x y

p y p y y p y x p x y dx
− −

− −

= = =
∫

(4)

Eqs. (3) and (4) constitute a formal solution to the
estimation problem. The general principle of the particle
filter is to use Monte Carlo simulation strategies to
approximately obtain the above integrals and hence the
associated conditional pdf-s.

3. RAO-BLACKWELLIZED PARTICLE FILTERS

The standard particle filter becomes computationally
inefficient for higher dimensional systems as one has to
choose very large number of particles to approximate
the conditional pdf-s with acceptable accuracy and
thereby to reduce the variance (that occurs due to the
finiteness of the ensemble size) associated with the
estimated quantities. However, when the model has a
tractable substructure such that a significantly large
subset of the state variables can be marginalized out
analytically (using the Kalman filter, say), then we only
need to sample from a reduced state space. This improves
the efficiency of the sampling technique and reduces the
variance of the estimator. This technique is called Rao-
Blackellization. The principle may be further explained
as follows.

Let the states x
k
 be partitioned into two groups as I

kx

and II
kx  such that, conditioned on I

kx , the conditional

posterior distribution 1:( | , )II I
k k kp x x y  is analytically

tractable. Then making use of the decomposition of the
posterior as

1: , 1: 1:( , | ) ( | ) ( | )I II II I I
k k k k k k k kp x x y p x x y p x y= , (5)

II
kx can be marginalized out and we need to focus on

estimating 1:( | )I
k kp x y  which corresponds to a state space

of reduced dimension. In particular, if 1:( | , )II I
k k kp x x y  is

a linear-Gaussian state space model, the states II
kx

conditioned on I
kx  and y

1:k
 can be estimated exactly using

the Kalman filter. The expectation I(ψ) in Eq. (2) may

be re-written as

1:( ) ( , ) ( , | )I II I II I II
k k k k k k kI x x p x x y dx dxψ = ψ∫ (6)

Since the following identities hold

1:
1:

1:

1:

1:

( | , ) ( , )
( , | )

( , , )

( | , ) ( | ) ( )

( | , ) ( | ) ( )

I II I II
I II k k k k k
k k k I II I II

k k k k k

I II II I I
k k k k k k

I II II I I I II
k k k k k k k k

p y x x p x x
p x x y

p x x y dx dx

p y x x p x x p x

p y x x p x x p x dx dx

=

=

∫

∫
,

(7)

it follows that:

1:

1:

1:

( , ) ( | , ) ( | ) ( )
( )

( | , ) ( | ) ( )

( ) ( )

( | , ) ( | ) ( )

I II I II II I I I II
k k k k k k k k k k

I II II I I I II
k k k k k k k k

I I I
k k k

I II II I II I I
k k k k k k k k

x x p y x x p x x p x dx dx
I

p y x x p x x p x dx dx

g x p x dx

p y x x p x x dx p x dx

ψ
ψ =

=
  

∫
∫

∫
∫

(8)

where 1:( ) ( , ) ( | , ) ( | ) ( )I I II I II II I I II
k k k k k k k k k kg x x x p y x x p x x p x dx= ψ∫ .

Noting that

1: 1:

( , , ) ( , )
( | , ) ( | ) ( | )

( , ) ( )

I II I II
I II II I II II Ik k k k k

k k k k k k k k kI II I
k k k

p x x y p x x
p y x x p x x dx dx p y x

p x x p x
= =∫ ∫ ,

I(ψ) may be expressed as

1:

( ) ( )
( )

( | ) ( )

I I I
k k k

I I I
k k k k

g x p x dx
I

p y x p x dx
ψ = ∫

∫ (9)

Assuming that ( )I
kg x  and 1:( | )I

k kp y x  can be evaluated

analytically, I(ψ) may also be evaluated via the above
expression.

The estimate of I[ψ(x
k
)] using a standard particle

filter (bootstrap filter) involves the following steps.

(1) Prediction: Each sample from the pdf p(x
k–1

 | y
1:k–1

)
is propagated through the process equation to obtain

sample from the prior at t
k
:{ }*

1
( )

N

k i
x i

=
. Here N denotes

the ensemble size.

(2) Update: When the measurement y
k
 arrives, the

likelihood of each prior sample is evaluated and a
normalized weight for each particle is obtained as
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*

*

1

( | ( ))

( | ( ))

k k
i N

k k
j

p y x i
q

p y x j
=

=
∑ (10)

Define a probability mass function
*( ) ( )k k iP x j x i q = =   and generate N samples { }

1
( )

N

k i
x i =

from this discrete distribution. These samples are
approximately distributed as the required pdf p(x

k
 | y

1:k
)

[3]. This procedure is repeated for all the time steps. Now
the estimate of I[ψ(x

k
)] may be obtained as

1

1ˆ( ) ( ( ))
N

k
i

I x i
N =

ψ = ψ∑ (11)

The Rao-Blackwellized estimate of I(ψ) may be
obtained as

1

1ˆ ( ) ( ( ), )
N

R I II
k k

i

I E x i x
N =

 ψ = ψ ∑ (12)

Here E[.] represents the expectation with respect to

the pdf ( )1:| ( ),II I
k k kp x x i y . Note that efficient particle

filters using sequential importance sampling are available
and they perform better than the bootstrap filter provided
the importance sampling density function is appropriately
chosen. Since the present focus is on evolving a novel
Rao-Blackwellization in the context of substructured
mechanical oscillators, we continue to use the bootstrap
filter.

4. IMPLEMENTATION OF RAO-BLACKWELLIZED PARTICLE

FILTERS FOR MECHANICAL OSCILLATORS

Before discussing the implementation of Rao-
Blackwellization for mechanical oscillators, it would be
useful to examine the type of systems that are amenable
for the available form of Rao-Blackwellization as
outlined in the last section. When a system is conceived
as an assemblage of two or more substructures, the
arrangement may be either cascaded or coupled as
schematically shown in Fig. 1. Referring to Eq. (5), we
readily comprehend that, for implementing Rao-
Blackwellization, the vector field corresponding to the

nonlinear state vector I
kx  must be functionally

independent of the state vector II
kx  of the conditionally

linear subsystem. Thus we conclude that Rao-
Blackwellization is directly applicable to systems with

cascaded substructures only. However, the present focus
is on estimations of mechanical oscillators that generally
represent spatially discretized forms of partial differential
equations (PDE-s) governing the motion of a system of
relevance in solid mechanics. Substructures of such
oscillators are almost always coupled (Fig. 1(b)), due to
the action/reaction between any pair of them, and hence
they do not directly admit Rao-Blackwellization even if
some of the substructures are linear. In the present work,

the issue of coupling is tackled by expressing II
kx in the

model of the nonlinear part ( 1:( | , )I I II
k k k kx p x x y∼ ) in

terms of the known values of 1
I
kx −  and 1

II
kx −

(corresponding to a specific simulation or particle) using
explicit forms of Ito-Taylor expansions. In the procedure
developed here for implementing Rao-Blackwellization
for mechanical systems, a standard particle filter
(bootstrap filter) is used for estimating the states of the
nonlinear part and the discrete Kalman filter is employed
for the linear part. Further details of the procedure are
provided in the following.

Figure 1: A Schematic Representation of Cascaded and Coupled
Substructures

The process and measurement equations of the
nonlinear part may be expressed as:

1 ,( , , )I I I
k k k c k kx f x x w+ = (13a)

( , )I I I I
k k k ky h x v= (13b)

where x
c,k

 is the displacement at the interface degrees of

freedom common to both substructures and I
kw  is the
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random variable representing the process noise. I
ky  is

the measurement and I
kv is the measurement noise. The

equation of motion of the linear part may be expressed
in state space form as

II IIx Ax BF= + + σξ� (14)

where A and B are system matrices and the vector F
contains the forces acting in the system including the
interaction forces between the substructures. σ is a matrix
whose elements determine the strength of the process
noise and the elements of ξ  are white noise (to be
interpreted formally as the derivative of a standard
Brownian motion). The equation may be discretized as

1
II II II
k k k k kx x w+ = φ + Γ + (15)

where 1( )k kA t t
k e + −φ = is the fundamental solution matrix,

1

1( ) ( )
k

k

k

t
A t

k

t

e BF d
+

+ −τΓ = τ τ∫  denotes the particular solution

corresponding to the forcing vector BF and II
kw is a zero

mean Gaussian random variable representing the process
noise. The measurement equation of the linear part may
be expressed as

( , )II II II II
k k k ky h x v= (16)

where II
kv represents the measurement noise.

In order to implement Rao-Blackwellization, the
following steps are used.

1. Set k = 0. Generate { },0 1
( )

N

c i
x i

=
 and { }0 1

( )
NI

i
x i

=
 from

the initial pdf-s p(x
c,0

) and 0( )Ip x  respectively. Also

generate the noise vector { }0 1
( )

NI

i
w i

=
 from the pdf

p(wI).

2. Set k = k + 1. Obtain { }
1

( )
NI

k i
x i

=
using the process

equation. When I
ky  arrives, estimate ˆ I

kx using the

standard particle filter algorithm. For all particles,

obtain 1( ), ( , ]c k kx t t t t +∈ , using Ito-Taylor

expansions of the components of x
c
 of the linear

substructure. Hence find the interaction force
between the substructures in the time step considered.

3. Based on the approximation to the interaction effects
computed in step (2), find Γ

k
. Then, making use of

the measurement II
ky , estimate { }

1
ˆ ( )

NII
k i

x i
=

using N

Kalman filters. Now find the displacements at the

interface, { }, 1
( )

N

c k i
x i

=
.

4. Repeat steps 2 and 3 till the terminal time is reached.

The central idea of the proposed procedure may be
observed to be the use of stochastic Taylor expansions
(Ito-Taylor or even Stratonovich-Taylor) to extrapolate
the displacements at the interface degrees of freedom.
Thus the dependence of the state vector of the
conditionally linear part on the process equation of the
nonlinear part becomes computationally tractable within
a Rao-Blackwellization framework. Any formal order
of accuracy can be achieved, in principle, by considering
an adequate number of terms in the Ito-Taylor
expansions.

5. THE DISCRETIZATION OF THE

SYSTEM/OBSERVATION EQUATIONS

The governing SDE-s for the system/observations
corresponding to the nonlinear substructure need to be
discretized and brought to a form consistent with Eqs.
1(a) and 1(b) so that they may be processed further with
the particle filter algorithm. Just as a time-marching
algorithm for a deterministic ODE is often derived using
variations of a Taylor expansion, the SDE-s may similarly
be discretized using the stochastic Taylor (Ito-Taylor)
expansion [21,22]. Details of Ito-Taylor expansions and
related concepts in stochastic calculus may be found in
[14, 21-23].

Towards numerical implementation, we presently
consider a five degrees of freedom (5-DOF) linear
oscillator, a 3-DOF linear oscillator and a 3-DOF
nonlinear oscillator, subjected to support motion as shown
in Figs. 2, 3 and 4 respectively. The decompositions of
the oscillators into substructures are also indicated. Both
the substructures of the 5-DOF linear system are linear.
While the states of substructure 2 will be estimated by
particle filter, substructure 1 will be handled by Kalman
filter using the proposed methodology. In the 3-DOF
nonlinear oscillator, only the 2nd substructure is nonlinear
with hardening springs. Substructure 1 of the 3-DOF
linear oscillator remains linear while the governing
equation of substructure 2 becomes nonlinear when its
parameters are declared as additional states.
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The governing SDE-s of the 5-DOF oscillator may
be expressed in the following incremental form.

1 6

2 7

3 8

4 9

5 10

6 6 1 1

7 7 2 2

8 8 3 3

9 9 4 4

10 10 5 5

dx x dt

dx x dt

dx x dt

dx x dt

dx x dt

dx a dt dB

dx a dt dB

dx a dt dB

dx a dt dB

dx a dt dB

= 
= 
=


= 
= 
= + σ 
= + σ


= + σ 
= + σ 
= + σ 

(17)

with initial conditions 0(0) , [1,10]i ix x i= ∈ . The

diffusion coefficients , [1,5]i iσ ∈  represent the

intensities of the associated additive noise processes and

, [1,5]idB i ∈  represent increments of Brownian motion

process. The drift coefficient functions are given by

[ ]

[ ]

[ ]

[ ]

6 1 2 1 2 2 1 2 6 2 7
1

7 2 1 2 3 2 3 3 2 6 2 3 7 3 8
2

8 3 2 3 4 3 4 4 3 7 3 4 8 4 9
3

9 4 4 3 4 9 8 5 4 5 5 9 10
4

10

1
( ) ( )

1
( ) ( )

1
( ) ( )

1
( ) ( ) ( ) ( )

g

g

g

g

a k k x k x c c x c x x
m

a k x k k x k x c x c c x c x x
m

a k x k k x k x c x c c x c x x
m

a k x x c x x k x x c x x x
m

a

= − + − + + − −

= − − + + − − + + − −

= − − + + − − + + − −

= − − + − + − + − −

��

��

��

��

[ ]5 5 4 5 10 9
5

1
( ) ( ) gk x x c x x x

m















= − − + − − 


��

(18)

The SDE-s for the 3-DOF nonlinear oscillator with
the parameters α, β and c declared as additional states
may be expressed as

1 4

2 5

3 6

4 4 1

5 5 2

6 6 3

7 4

8 5

9 5

l

r

c

dx x dt

dx x dt

dx x dt

dx a dt dB

dx a dt dB

dx a dt dB

dx dB

dx dB

dx dB

α

β

=
= 
=


= + σ 
= + σ 
= + σ 
= σ
= σ 
= σ 

(19)

The initial conditions are given by

0(0) , [1,6]i ix x i= ∈  and the drift coefficient functions are:

[ ] [ ]{ }

3
4 1 4 7 1 2 8 1 2 9 4 5

3 3
5 7 2 1 3 8 2 1 2 3 9 5 4 6

3
6 3 6 7 3 2 8 3 2 9 6 5

1
( ) ( ) ( )

1
2 ( ) ( ) ( ) 2 ( )

1
( ) ( ) ( )

l l g

l

g

r r g
r

a k x c x x x x x x x x x x x
m

a x x x x x x x x x x x x x x
m

a k x c x x x x x x x x x x x
m

 = − + + − + − + − −  

 = − − + + − + − + − + −  

 = − + + − + − + − −  


��

��

��

(20)

σ
l
, σ and σ

r
 are the intensities of the additive process

noises. It may be noted here that extending the state vector
with parameters, to transform the problem to an optimal
filtering problem, is a commonly used technique in fixed
parameter estimation. The parameters will be declared
as stochastic processes evolving in time. In Eq. 19,
σα, σβ and σ

c
 represent the assumed diffusion coefficients

associated with σ, β and c respectively. The incremental
form of the SDE-s corresponding to the 3-DOF linear
oscillator, after declaring k

3
 and c

3
 as additional state

variables, is given by

3

3

1 4

2 5

3 6

4 4 1 1

5 5 2 2

6 6 3 3

7 4

8 5

k

c

dx x dt

dx x dt

dx x dt

dx a dt dB

dx a dt dB

dx a dt dB

dx dB

dx dB

= 
= 
=


= + σ 
= + σ 
= + σ
= σ 
= σ 

(21)

with initial conditions 0(0) , [1,6]i ix x i= ∈ . The drift

coefficient functions are given by

[ ]

[ ]

[ ]

4 1 2 1 2 2 1 2 4 2 5
1

5 2 1 2 2 2 4 2 5 7 2 3 8 5 6
2

6 7 3 2 8 6 5
3

1
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σ
i
,  i ∈  [1, 3], represent the diffusion coefficients of the

associated additive noise processes; and,
3kσ and

3cσ
represent the assumed diffusion coefficients of the SDE-
s governing the evolutions of the parameter states k

3
 and

c
3
 respectively. Note that the displacement and velocity

components in Eqs. (17-22) are relative with respect to
the support.
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Using explicit forms of truncated Ito-Taylor
expansions, maps for the displacement and velocity
components of the substructure 2 of the 5-DOF linear
oscillator over the interval (t

k
, t

k+1
) (with a uniform step-

size h = t
k+I

 – t
k
) may be shown to be:
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Here I
5
, I

40
, I

50
, I

400
 and I

500
 are multiple stochastic

integrals (MSI-s) given by ( )
k

k

t h

r r

t

I dB s
+

= ∫ ,

0 1( )
k

k k

t h s

r r

t t

I dB s ds
+

= ∫ ∫  and 
1

00 2 1( )
k

k k k

t h s s

r r

t t t

I dB s ds ds
+

= ∫ ∫ ∫ , r =

4, 5. Following Ito’s isometry, it may be shown that these
MSI-s are normal random variables [14] of the form
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In order to implement step (2) of the algorithm proposed
in the previous section, (truncated) Ito-Taylor expansions
for the displacement and velocity components of the
substructure 1 at the interface degrees of freedom (dof-
s) in the time interval t ∈  (t

k
, t

k+1
] are required. These

expansions presently take the following forms:
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The MSI-s can be modeled, as before, as zero mean normal random variables with readily derivable variances.

For the 3-DOF nonlinear oscillator, the truncated forms of the stochastic Taylor expansion for the displacement

and velocity components of the nonlinear substructure over the interval ( ]1, +kk tt  are given by:
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Displacement and velocity at the interface dof-s of substructure 1 of the 3-DOF nonlinear oscillator may now
be written as
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Similarly one may express the displacement and velocity at the interface dof-s of substructure: 2 also. The
truncated Ito-Taylor expansions for the displacement and velocity components of substructure 2 of the 3-DOF
linear oscillator may be shown to be of the form
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Expansions for displacement and velocity at the interface dof-s of substructure 1 of the 3-DOF linear oscillator
are given by
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Finally we observe that truncations of the Ito-Taylor
expansions have been so adjusted as to consistently
ensure that local orders of accuracy of the displacement
and velocity maps, in the above equations, are O(h3) and
O(h2) respectively. Since the state of the system is
presently being measured, the observation equation is in
a discrete form: y

k
 = h

k
(x

k
) + v

k
, v

k
 being the vector of

measurement noise. However, if the measurement
equation is in the form of an SDE, this equation may as
well be discretized using Ito-Taylor expansions.

6. NUMERICAL ILLUSTRATIONS

Consistent with the developments in the last section, we
continue to work with the 5-DOF linear, 3-DOF
nonlinear, and 3-DOF linear oscillators. In particular, we
use the 5-DOF and 3-DOF nonlinear oscillators to bring
out the superior performance of the proposed RBPF in
state estimations vis-à-vis a full-fledged particle filter
without substructuring. It is known that the Kalman filter
provides the optimal solution for state estimation of linear
oscillators with additive Gaussian noises. Hence, given
the exact solution via Kalman filter, the 5-DOF oscillator
may be well exploited to compare the relative numerical
performances of the RBPF and the standard particle filter
for state estimation. Next, to demonstrate the potential
of the proposed method in parameter estimations, we use
the 3-DOF linear and nonlinear oscillators. The

governing equations of the 3-DOF linear system become
nonlinear when the parameters of substructure 2 are
declared as additional states. For the 3-DOF nonlinear
oscillator, on the other hand, nonlinearity is localized in
substructure 2. These three examples together therefore
cover a reasonable range of test cases of interest.

For all the state estimation problems, the support
displacement is assumed to be harmonic, i.e., x

g
(t) = xg0

sin(λt). However, for parameter estimation problems, the
support motion is taken to be a realization of the

stochastic process 
1

( ) sin( )
n

g i i i
i

x t a t
=

= ω + θ∑  where the

parameters a
i
, ω

i
 and θ

i
 are appropriately chosen random

variables. The following parameter values are considered
for the 5-DOF linear oscillator: m

i
 = 100 kg, k

i
 = 30000

N/m and c
i
 = 100 Ns/m (i = 1, 2,..., 5). The parameters of

the support displacement are assumed as xg0
 = 0.01m and

λ = 14 rad/s, which is close to the first natural frequency
of the system. The process noise parameters are assumed

as max0.01| | ( 1,2,3,4)i gx iσ = =��  and 5 max0.03 | |xσ = ��

where 
maxgx�� is the maximum value of the realization of

( )gx t��  over the time interval of interest. Measurements

on the velocities of the 4th and 5th mass points are assumed
to be made. The following parameter values are
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considered for the 3-DOF nonlinear oscillator: m
1
 = m

2

= 100 kg, k
1
 = 30000 N/m, k

2
 = 25000 N/m, α = 3000

N/m, β = 1×106 N/m3, c
1
 = 60 Ns/m, c

2
 = 50 Ns/m and

c = 75 Ns/m. For the state estimation problem, the
parameters of the process noise are chosen as

max0.01| |l r gx= =σ σ ��  and max0.03 | | ,gx=σ ��  whereas for

the parameter estimation problem, their values are taken

as max0.01| | .l r gx= = =σ σ σ �� The parameters of the

support displacement are taken to be 
0

0.01gx = m and

λ  = 20rad/s for the state estimation problem. The
displacement and velocity maps, given by Eqs. (26a,b),
may be used for the state estimation problem of the 3-
DOF nonlinear system by setting x

7
 = α, x

8
 = β, x

9
 = c

and σα = σ
b
 = σ

c
 = 0. Measurements of all velocity

components are assumed to be made in the state
estimation problem. All the systems considered here are
assumed to start from rest. Moreover the initial conditions
are treated as deterministic.

For parameter estimation of the 3-DOF linear
oscillator, the chosen reference parameter values are:

* *
1 2 100m m= = kg, *

3 75m = kg, * *
1 2 25000k k= = N/m,

*
3 15000k = N/m, * *

1 2 150c c= = Ns/m and *
3 100c = Ns/m.

The values of the process noise parameters are taken as

max
0.01 ( 1,2,3)i gx i= =σ �� . Moreover the following

random parameters of the support motion are assumed:
a

i
 is uniformly distributed in the range [–0.005, 0.005]m,

while ω
i
 and θ

i
 are uniformly distributed in the ranges

[5, 30] rad/s and [0, 90]° respectively. Value of n is taken
as 50. The velocities of the 3rd and 4th mass points
constitute the measurements. The initial pdf of x

7
(i.e.,

k
3
) is assumed to be uniformly distributed in the range

* *
3 3[0.8 ,1.8 ]k k  and x

8
(i.e., c

3
) is assumed to be uniformly

distributed in the range * *
3 3[0.4 ,1.2 ]c c . It may be noted

that the deviation of the mean of the initial pdf from the
true value is 30% for x

7
 and 20% for x

8
. Finally, for the

parameter estimation of the 3-DOF nonlinear oscillator,
the following values are used for the components of the
multi-frequency harmonic support motion: a

i
, ω

i
 and θ

i

are assumed to be uniformly distributed in the ranges
[–0.005, 0.005]m, [10, 50]rad/s and [0, 90]° respectively.
We use n = 50. In addition to the velocity measurements
at all dof-s, the displacement of the substructure 2 is also
measured. The initial pdf-s of x

7
(i.e., α), x

8
(i.e., β) and

x
9
(i.e., c) are assumed to be uniformly distributed in the

ranges [0.8α*, 1.4α*], [0.8β*, 1.4β*] and [0.6c*, 1.2c*]
respectively. Note that α *, β* and c* represent the
reference parameter values of α, β and c respectively.
Here, for all the parameters, the mean of the initial pdf is
consistently off by 10% from the true value. In all the
parameter estimation problems, the diffusion coefficients
of the SDE-s corresponding to the parameter states (i.e.,
σk3

 and σc3
 for the 3-DOF linear oscillator; and, σα, σβ

and σ
c
 for the 3-DOF nonlinear oscillator) are assumed

to be time varying with a slow decay given by the general
form σ(t) = 0.2 P exp(–0.5t), where P refers to the true
value of the parameter. Due to the decaying nature of
diffusion coefficients of the parameter SDE-s, subset of
the state space containing the particles (representing the
parameter states) shrinks as the estimation progresses and
hence one may expect a converging estimate.

In the present study all the measurements are
generated synthetically. The standard deviation of the
measurement noise is assumed to be 7.5% of the
maximum absolute value of the measured quantity for
all the state estimation problems, while it is reduced to
5% for parameter estimation. In all the examples
presented here, a uniform step size h is used. While we
use h = 0.005 s for the 5-DOF linear and 3-DOF nonlinear
oscillators, we increase the step size to h = 0.01 s for the
3-DOF linear system. The ensemble size used is a modest
N = 500 for all state estimation problems. However, for
the parameter estimation problems of the 3-DOF linear
and 3-DOF nonlinear oscillators, the ensemble sizes are
N = 3000 and N = 6000 respectively.

The results of state estimation of the 5-DOF linear
system are shown in Figs. 5 and 6. Fig. 5 shows the
measured quantities and their estimate using the proposed
RBPF. Excellent convergence of the mean of the estimate
can be observed. Fig. 6 shows a comparison of variances
of the estimates of displacements and velocities at the 4th

and 5th dof-s using the standard particle filter, the
proposed RBPF and the Kalman filter. We observe that
the RBPF estimates are consistently closer to the optimal
estimate. A significantly superior performance of the
proposed RBPF over the standard particle filter is clearly
noticeable. Figs. 7 and 8 show the results of state
estimations of the 3-DOF nonlinear oscillator. The
measured velocities at all dof-s and their estimates using
the novel RBPF are shown in Fig. 7. Variances of the
states estimated using the standard particle filter and the
RBPF are compared in Fig. 8. Once more, a substantial
reduction in the variance of the RBPF-based simulation
over that via the standard particle filter is observed. Figs
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Figure 2: A 5-DOF Linear Oscillator with Linear Springs and its Decomposition into Substructures

Figure 3: A 3-DOF Nonlinear Oscillator with Substructures (Note that the Spring Force in the Nonlinear Part is Given by αααααx+βββββx3,
where x is the deformation of the spring)



R. Sajeeb, C. S. Manohar and D. Roy

92 International Journal of Engineering Under Uncertainty: Hazards, Assessment and Mitigation, 1(1-2) 2009

Figure 4: A 3-DOF Linear Oscillator with Substructures; Substructure 2 is Considered to be Nonlinear Since k3 and c3 are Declared as
Additional State Variables

Figure 5: State Estimations of the 5-DOF Linear Oscillator using the RBPF -Measurements and Estimates
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Figure 6: State Estimations of the 5-DOF Linear Oscillator - Comparison of Performance of a Standard Particle Filter and the RBPF
with Kalman Filter

Figure 7: State Estimation of the 3-DOF Nonlinear Oscillator using the RBPF –Measurements and Estimates
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Figure 8: State Estimations of a 3-DOF Nonlinear Oscillator – Comparisons of Performance of a Standard Particle Filter and the RBPF

9 through 11 show the results of parameter estimation of
the 3-DOF linear oscillator. Fig. 9 shows time histories
of mean and standard deviation of the estimate of k

3

corresponding to five different runs of the same program.
Note that all the random variables required for the
simulation are generated independently in each run of
the program. Figure 10 shows similar plots for the
estimation of c

3
. Even though these estimates do not

converge to the true values of the associated parameters
(which is only natural in the presence of noises), the
robustness of the proposed RBPF is observable from these
plots. Fig. 11 shows the initial and final pdf-s (stationary
marginals) of the parameters. One readily observes the
considerable reduction in the variance of the estimates
from their initial (assumed) values; simultaneously as
the mean values converge close to their true values. The
results of parameter estimation of the 3-DOF nonlinear
oscillator are given in Figs. 12-15. Time histories of
means and standard deviations of the estimates of α, β
and c for five different simulations are shown in Figs.

12, 13 and 14 respectively. The initial and final pdf-s of
the parameters are shown in Fig. 15. The robustness and
accuracy of the new RBPF in parameter estimation is
again evident from these plots.

7. CONCLUDING REMARKS

A novel and numerically accurate form of Rao-
Blackwellized particle filter is proposed for state and
parameter estimations for a class of uncertain dynamical
systems, typically with localized nonlinearity. The
system to be identified is first decomposed into linear
and nonlinear substructures which are mutually coupled.
While the estimation using particle filters is restricted
only to the states of nonlinear substructures, the states
of complementary linear substructures are estimated
using an ensemble of Kalman filters, thus enabling us to
get a solution close to the optimal with lesser sampling
variance for a given ensemble size. Here the sampling
variance owes its origin not just to the finiteness of
ensemble sizes, but also to truncation errors of the finite
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Figure 9: Parameter Estimations of the 3-DOF Linear Oscillator– Time Histories of the Mean of the Estimate of k3 and the Associated
Standard Deviation for Five Different Simulations

Figure 10:Parameter Estimations of the 3-DOF Linear Oscillator –Time Histories of the Mean of the Estimate of c3 and the Associated
Standard Deviation for Five Different Simulations



R. Sajeeb, C. S. Manohar and D. Roy

96 International Journal of Engineering Under Uncertainty: Hazards, Assessment and Mitigation, 1(1-2) 2009

Figure 11:Parameter Estimations of the 3-DOF Linear Oscillator – initial (Assumed) and Final (Converged) pdf of the Estimated
Quantities, in One of the Simulations

Figure 12:Parameter Estimations of the 3-DOF Nonlinear Oscillator – Time Histories of the Mean of the Estimate of ααααα and the Associated
Standard Deviation for Five Different Simulations
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Figure 13:Parameter Estimations of the 3-DOF Nonlinear Oscillator – Time Histories of the Mean of the Estimate of βββββ and the Associated
Standard Deviation for Five Different Simulations

Figure 14:Parameter Estimations of the 3-DOF Nonlinear Oscillator – Time Histories of the Mean of the Estimate of c and the Associated
Standard Deviation for Five Different Simulations
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Figure 15:Parameter Estimations of the 3-DOF Nonlinear Oscillator – Initial (Assumed) and Final (Converged) pdf of the Estimated
Quantities, in One of the Simulations

precision arithmetic and approximations due to truncated
Ito-Taylor expansions. It is important to note that the
standard Rao-Blackwellization is not directly applicable
to substructures of a mechanical system as they do not
usually correspond to each other via a cascading effect.
To the authors’ knowledge, the present work constitutes
the first attempt at exploiting Rao-Blackwellization in
the context of state/parameter estimations of a mechanical
oscillator with a rational framework for handling the
coupling of the associated substructures. The limited
numerical illustrations on a few low-dimensional
oscillators emphasize the robustness and numerical
superiority of the proposed RBPF over the standard
particle filter and provide an adequate pointer to the
applicability of the method to higher dimensional
systems. The new RBPF has the potential to be applied
for state and parameter estimations of a majority of
engineering structures, since nonlinearity generally

appears in a localized form. We have presently used the
bootstrap filter for particle filtering, and, with more
efficient particle filters, the proposed RBPF may as well
offer a robust tool for online parameter estimations.
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