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Abstract: While particle filters are powerful tools for state or parameter estimations of highly nonlinear dynamical systems,
they become quite inefficient for higher dimensional systems as simulations over large ensembles of samples are required to
obtain a desirable accuracy in the estimations. Rao-Blackwellization is a technique that exploits the structure of the model to
analytically marginalize a subset of the state vector so as to reduce the dimension of the state space over which particlefilters
need to be applied. In this study, a novel procedure for implementing Rao-Blackwellization for state and parameter estimations
of uncertain dynamical systems of engineering interest is proposed. The strategy is based on decomposing the system to be
estimated into mutually coupled linear and nonlinear substructures and then putting in place a framework to account for
coupling between the substructures. While particle filters are applied to the nonlinear substructures, estimation of linear
substructures proceeds using a bank of Kalman filters. Numerical illustrations are provided for state/ parameter estimations
of a few linear and nonlinear oscillators with noise in both the process and measurements. The proposed procedure is notably
efficient in state and parameter estimations of many engineering systems with localized nonlinearity.
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1. INTRODUCTION

Estimation of state and parameters of uncertain dynamical
systemsisof distinctive significancein many engineering
applications. For instance, feedback control applications
of dynamical systems require the states of the system to
be estimated from the available noisy measurements.
Similarly, performance eval uation and health monitoring
of mechanical and structural systems require estimation
of both states and parameters of the system. For systems
described by linear-Gaussian state space models, the
classical Kalman filter providesthe optimal estimate. For
nonlinear state estimation, there are two main classes of
methods, viz., the suboptimal filter strategies, such as
those based on the extended Kalman filter (EKF) or its
variants [1,2] and those based on Monte Carlo
simulations, popularly known as particle filters [3-7].
Unlike the EKF, which islimited to capturing a Gaussian
approximation of the states using the first two moments,
the particle filters obtain the conditional probability
density function (pdf) through a set of random particles
(simulated trajectories at discrete time instants) with
associated weights. Hence, they are enabled to treat
system nonlinearity and thus the non-Gaussian nature of

the response and even non-Gaussian nature of noises.
Different versions of particle filters, their development
and potential applicationscan befoundin[8,9]. However,
despite the stated advantages, particle filters become
increasingly inefficient with increasing system
dimensionality as a large number of samples may have
to be smulated in order to appropriately represent the
conditional pdf. However, if the model has a tractable
(linear) substructure with the associated variables
amenablefor treatment with the Kalman filter, the particle
filter may only be applied to a reduced state space
corresponding to the complimentary (possibly nonlinear)
substructure. Other than an improvement in the
computational efficiency, this has also an attendant
benefit of areduced variance of the estimator as a direct
consequence of Rao-Blackwell theorem. The essence of
this theorem is that, given a pair of random variables X
and Y, we have the conditional inequality var { E[h(X) |
Y]} < var [h(X)] (var{.} denotes variance and E[.] the
mathematical expectation) [10]. In the context of Monte
Carlo simulation, this reflects a basic principle - one
should carry out analytical computations as much as
possible [11]. Combining particle filters with analytical
computations (through Kalman filters) is generally
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referred to as Rao-Blackwellization [10, 11], resulting
in Rao-Blackwellized Particle filters (RBPF) [8, 12]. It
has been shown that Rao-Blackwellization, if possible,
reduces the risk of divergence in state estimation
problems, even when a small number of samples are
employed [13].

Particle filters are widely used in navigation and
target tracking applications. Their use in state/parameter
estimation of mechanica systems has however not been
attempted until recently. Manohar and Roy [14] have
demonstrated the potentia of particlefiltersfor parameter
identification of noisy nonlinear dynamical systems.
Ching et al. [15, 16] have implemented particlefiltersto
estimate the states and parameters of linear and nonlinear
systemswith time varying parameters. Li et al. [17] have
used it for identifying nonlinear hysteretic systems. The
RBPF has been used for different applications such as
target tracking [18], navigation [13], fault diagnosis[19]
and mobilerobotics[20]. The existing forms of the RBPF
crucially depend on a specific form of coupling between
the two subsystemswith information cascading from only
one subsystem to the other, with no mutual interactions.
Unfortunately, with thisrestriction in place, the potential
of the RBPF in the context of state and parameter
estimations of mechanical/structural systems cannot be
entirely realized.

More often than not, engineering structures are
designed to behave as linear systems and hence a
substantially major part of the structureislikely toremain
strictly linear even under extreme loading conditions. In
other words, the nonlinearity in most nonlinear dynamical
systems of engineering interest is spatially localized. To
cite instances, mention may be made of nonlinear joints
in an otherwise linear structure, base isolated structures
or the localized plastic deformation of a mechanical/
structural system. Thus, given that linear substructures
(with the corresponding vector fields being linear in the
state variables) may bereadily traced out in mathematical
models of most mechanical/structural systems, it is
natural to ask if an adaptation of the RBPF ispossiblein
the state and parameter estimations of these systems.
Even if the system is decomposable into linear and
nonlinear substructures, we again emphasize that adirect
application of the RBPF is not possible owing to the two-
way nature of the coupling existing between the
substructures of engineering dynamical systems. In the
present paper, we propose a novel variation of the RBPF
that indeed enables state and parameter estimations of
mechanical systems (e.g. oscillators). Following this, we

also demonstrate the performance of the method using a
few linear and nonlinear mechanical oscillators with
uncertainty in both the process and measurements. The
governing stochastic differential equations (SDE-s) of
these oscillators are discretized using explicit forms of
Ito-Taylor expansions. The numerical results adequately
bring forth the superiority of the novel RBPF over
standard particlefiltersin state and parameter estimations
of such systems.

2. THE StaTE EstimATION UsING PARTICLE FILTERS

L et x [ ™ denotethe state vector of adynamical system
and y, O O the instantaneous measurement vector at
time instant t,. From the governing SDE-s for the
dynamical system aswell as the observation process, the
discrete model of the system may be obtained as:

Xer = fic (G W) (1a)
Y. =hX.,v) k=12, .., N, (1b)
Here f, :00 %0 ™and h:0x0 %0 "“ae

linear/nonlinear functions of the state, w, M ™ and

v, 0 ™ aresequence of zero-mean mutually independent

random variables, independent of current and past states.
It may be emphasized that x, would possess strong
Markov properties, since the state vector sequence is
derived through a strong discretization of the governing
SDE-s and that the conditional pdfs p(x | x, ;) and
p(y, | X) are deducible from Egs. (1). For convenience,
we introduce the following sequences of random

varigbles: x,, :={x} " and y,, ={y} * . The objective
isto estimate the conditional pdf p(x,, |y,.) recursively
in time or, more conveniently, only the marginal pdf
P(%, | ¥;) and thus find the expectation of a function
W(x) as:

H(W) = E[W06)] = [ Wx) PO [ V)X (2)

The integral in Eq. (2) is multi-dimensiona and its
analytical evaluation is generaly not possible. However,
when process and measurement equations are linear and
noises are Gaussian and additive, Kalman filter provides
the exact (optimal) solution. However, for amore genera
case, aformal solution is derivable as follows (Gordon
et al., [3]). First obtain:

POG 1 Yara) = [ PO X | Vi) s = [POX I 2) POSa | Vi 2) O

©)
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This equation represents the prediction equation.
When the measurement vector y, becomes available, one
may derive the updation equation based on Bayes'
theorem as follows:

P(Yi %) P& | i)
PO %) POK | o) O

(4)

Egs. (3) and (4) constitute a formal solution to the
estimation problem. The genera principle of the particle
filter is to use Monte Carlo simulation strategies to
approximately obtain the above integrals and hence the
associated conditional pdf-s.

PO%: Yar) — POV %) PR W) —
P(Ya) P(Yic | Yarer)

P(% | Vi) =

3. Rao-BLAckWELLIZED PARTICLE FILTERS

The standard particle filter becomes computationally
inefficient for higher dimensiona systems as one has to
choose very large number of particles to approximate
the conditional pdf-s with acceptable accuracy and
thereby to reduce the variance (that occurs due to the
finiteness of the ensemble size) associated with the
estimated quantities. However, when the model has a
tractable substructure such that a significantly large
subset of the state variables can be marginalized out
analytically (using the Kalman filter, say), then we only
need to sample from areduced state space. Thisimproves
the efficiency of the sampling technique and reduces the
variance of the estimator. This technique is called Rao-
Blackellization. The principle may be further explained
as follows.

L et the states x_be partitioned into two groups as x,
and x' such that, conditioned on X, , the conditional

posterior distribution p(X. | X, Yy ) is analyticaly

tractable. Then making use of the decomposition of the
posterior as

PG % 1Y) = POXC 1K Y ) POS [ V) (B)

x, can be marginalized out and we need to focus on
estimating p(x, | Y,,) Which correspondsto astate space
of reduced dimension. In particular, if p(x,' |X.,Y,,) IS
a linear-Gaussian state space model, the states x'

conditionedon x, andy,, can be estimated exactly using
the Kalman filter. The expectation I({)) in Eq. (2) may

be re-written as

(W) = W0 POSX Y )da (6)

Since the following identities hold

P(Yure %% ) P(% . %)

p(xilwxiil |y:|.'k): | n | 1
jp(xk,xk s Vi) O, A
_ PO %o %) PO XD P()
[P0z 16X POS 1) POG) A
(7)
it follows that:

) _ W08 %) PCai %) POXC1%0) PO ) O
J P 1) PO 1%50) PO ) A
_ [9(x) p(x)dx
PO 1% ) POS 1) Bp(x )b

(8)

where 9(%) = [W0% ) POV X% ) POKE D) POR) A
Noting that

PO X V) POG %)

[P0 XX ) PO 16 = [= ny 6= PO %),
P %) P(X)
I (W) may be expressed as
90%) PO% )X,
H(p) = [ (9)

[ PCYc 1 %) PO e

Assuming that g(x,) and p(y,, |x,) can be evauated

analytically, 1() may also be evaluated via the above
expression.

The estimate of 1[y(x)] using a standard particle
filter (bootstrap filter) involves the following steps.

(1) Prediction: Each sample from the pdf p(x_, | y,.,)
is propagated through the process equation to obtain
samplefromthe prior at t,: { X, (i)} :11 . Here N denotes
the ensemble size.

(2) Update: When the measurement y, arrives, the

likelihood of each prior sample is evaluated and a
normalized weight for each particle is obtained as
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P(Yi 1% ()
le(yk 1%(1))

G =
(10)

Define a probability function

P (i) =%()H=q and generate N samples {x (i} ",
from this discrete distribution. These samples are
approximately distributed as the required pdf p(x, |y,,)
[3]. Thisprocedureisrepeated for all thetime steps. Now
the estimate of 1[y)(x )] may be obtained as

mass

"W == wx ()

N 2 (12)

The Rao-Blackwellized estimate of 1({)) may be
obtained as

PR () :%Z E AN (), X" (12)

Here E[.] represents the expectation with respect to

the pdf p(XL' IXL(i),yIk). Note that efficient particle

filtersusing sequential importance sampling areavailable
and they perform better than the bootstrap filter provided
theimportance sampling density function isappropriately
chosen. Since the present focus is on evolving a novel
Rao-Blackwellization in the context of substructured
mechanical oscillators, we continue to use the bootstrap
filter.

4. | MPLEMENTATION OF RA0-BLACKWELLIZED PARTICLE
FiLTERS FOR MECHANICAL OSCILLATORS

Before discussing the implementation of Rao-
Blackwellization for mechanical oscillators, it would be
useful to examine the type of systems that are amenable
for the available form of Rao-Blackwellization as
outlined in the last section. When a system is conceived
as an assemblage of two or more substructures, the
arrangement may be either cascaded or coupled as
schematically shown in Fig. 1. Referring to Eq. (5), we
readily comprehend that, for implementing Rao-
Blackwellization, the vector field corresponding to the

nonlinear state vector x, must be functionally

independent of the state vector x,' of the conditionally

linear subsystem. Thus we conclude that Rao-
Blackwellization is directly applicable to systems with

cascaded substructures only. However, the present focus
is on estimations of mechanical oscillatorsthat generally
represent spatially discretized formsof partial differential
equations (PDE-s) governing the motion of a system of
relevance in solid mechanics. Substructures of such
oscillators are ailmost always coupled (Fig. 1(b)), dueto
the action/reaction between any pair of them, and hence
they do not directly admit Rao-Blackwellization even if
some of the substructures are linear. In the present work,

the issue of coupling is tackled by expressing x'' in the

model of the nonlinear part (% ~ pP(X% |% ,¥.)) in

terms of the known values of x_, and x',
(corresponding to a specific ssimulation or particle) using
explicit forms of Ito-Taylor expansions. In the procedure
developed here for implementing Rao-Blackwellization
for mechanical systems, a standard particle filter
(bootstrap filter) is used for estimating the states of the
nonlinear part and the discrete Kalman filter isemployed
for the linear part. Further details of the procedure are
provided in the following.

x ~plxi1y,) - x — el lx . v, )

Monlmear Comdigivnally |imesar

fah Caseaded svalam

'I'_I - ,I'=". '|'_I | 'I'_I 5 _'|'II 1 .'|:I
-l

Monlinear Linmuditmally Landr

() Coupled system

Figure 1: A Schematic Representation of Cascaded and Coupled
Substructures

The process and measurement equations of the
nonlinear part may be expressed as:

e = Fi (X, Xek W) (13a)

Yie =M (6 v0) (13b)
where x_, is the displacement at the interface degrees of
freedom common to both substructures and w is the
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random variable representing the process noise. y, is

the measurement and v, is the measurement noise. The

equation of motion of the linear part may be expressed
in state space form as

X' = AX" +BF + 0% (14)

where A and B are system matrices and the vector F
contains the forces acting in the system including the
interaction forces between the substructures. o isamatrix
whose elements determine the strength of the process
noise and the elements of & are white noise (to be
interpreted formally as the derivative of a standard
Brownian motion). The eguation may be discretized as

X1I<|+1 = (ﬂ<xtl<l +1y +W1|<| (15)

where @ =" is the fundamental solution matrix,

Yo

— Aty —T) . .
M= [e™"BF(AT denotes the particular solution
[

corresponding to the forcing vector BF and w;' isa zero

mean Gaussian random variabl e representing the process
noise. The measurement equation of the linear part may
be expressed as

Y =h 04 v) (16)

where v,' represents the measurement noise.

In order to implement Rao-Blackwellization, the
following steps are used.

1. Set k= 0. Generate {xcyo(i :11 and {x(')(i)} :11 from

the initial pdf-s p(x_,) and p(x,) respectively. Also

generate the noise vector {WLI) (i)} i: from the pdf
p(W).

2. Set k= k+ 1. Obtain {x,'((i)}i’ilusing the process

equation. When y, arrives, estimate %, using the
standard particle filter algorithm. For al particles,
obtain x(t), tO(t.t.], using Ito-Taylor

expansions of the components of x_ of the linear
substructure. Hence find the interaction force
between the substructuresin the time step considered.

3. Based on the approximation to the interaction effects
computed in step (2), find I',. Then, making use of

the measurement y' , estimate {)2,'(' (i)} i’ilusing N

Kaman filters. Now find the displacements at the
interface, {xc,k (i)} L.

4. Repeat steps 2 and 3till theterminal timeisreached.

The central idea of the proposed procedure may be
observed to be the use of stochastic Taylor expansions
(Ito-Taylor or even Stratonovich-Taylor) to extrapolate
the displacements at the interface degrees of freedom.
Thus the dependence of the state vector of the
conditionally linear part on the process equation of the
nonlinear part becomes computationally tractablewithin
a Rao-Blackwellization framework. Any formal order
of accuracy can be achieved, in principle, by considering
an adequate number of terms in the Ito-Taylor
expansions.

5. THE DISCRETIZATION OF THE
SysTEM/OBSERVATION EQUATIONS

The governing SDE-s for the system/observations
corresponding to the nonlinear substructure need to be
discretized and brought to a form consistent with Egs.
1(a) and 1(b) so that they may be processed further with
the particle filter algorithm. Just as a time-marching
algorithm for a deterministic ODE is often derived using
variationsof aTaylor expansion, the SDE-smay similarly
be discretized using the stochastic Taylor (Ito-Taylor)
expansion [21,22]. Details of Ito-Taylor expansions and
related concepts in stochastic calculus may be found in
[14, 21-23].

Towards numerical implementation, we presently
consider a five degrees of freedom (5-DOF) linear
oscillator, a 3-DOF linear oscillator and a 3-DOF
nonlinear oscillator, subjected to support mation as shown
in Figs. 2, 3 and 4 respectively. The decompositions of
the oscillators into substructures are also indicated. Both
the substructures of the 5-DOF linear system are linear.
While the states of substructure 2 will be estimated by
particle filter, substructure 1 will be handled by Kalman
filter using the proposed methodology. In the 3-DOF
nonlinear oscillator, only the 2™ substructureis nonlinear
with hardening springs. Substructure 1 of the 3-DOF
linear oscillator remains linear while the governing
equation of substructure 2 becomes nonlinear when its
parameters are declared as additional states.
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The governing SDE-s of the 5-DOF oscillator may
be expressed in the following incremental form.

dx, = x,dt

dx, = x,dt

dx, = Xdt

dx, = x,dt

dxs = X0t

dx, = a,dt + 0,dB,
dx, =a,dt + 0,dB,
dx, = a,dt + 0,dB,
dx, = a,dt + 0,dB,
dx,, = ay,dt + 0,dB;

(17)

0 | o A Y Y

with initial conditions x(0)=x,,i J[110]. The
diffusion coefficients o, iJ[15] represent the
intensities of the associated additive noise processes and

dB ,i0[15] represent increments of Brownian motion
process. The drift coefficient functions are given by

1 . D

8 =——[(k k)% —kox *+(& +6)% —&%] %, 0
m 0

0

a =_é[_kzxi ke tha)X “KX —CX e, +63)% _Q-;Xs] _ng
a =—$[—k3xz (ks KX KXy —CX (G 1Ci)% _C4X9] _ng
O

a :—i[k‘t(x4 =%) +C (% ~%) the(X %) +C5(% —Xp)] K, E
N 0
1 v - . 0
a, ms[ks(xs %) +G (4 )] X, g
(18)

The SDE-s for the 3-DOF nonlinear oscillator with
the parameters a, B and ¢ declared as additiona states
may be expressed as

dx, = x,dt O

1l
dx, = Xt O
dx, = x,dt E

dx, =a,dt + g,dB, [
dx, =a.dt +adB, O
dx, = agdt + qd&%
dx, =o,dB, 0
dx, = 0,dBy E
dx, = 0.dB, H

(19)

The initial conditions are given by

x (0) = x,, i 0[1,6] andthedrift coefficient functionsare:

a, :_miH(qu O Xy X% (% —X,) +X(% _Xz)3 X (X, _XS)H _xg B
O

8= _i{)@[zxz -(% +X3)] +% H% -%)* +(x, _X3)3E +X9[2X5 (X, +X5)]} ﬁ'igE
3 = -% B 6% %06 %) $%06 =%)° % (% X%)H % %
(20)

0,, 0 and o, are the intensities of the additive process
noises. It may be noted herethat extending the state vector
with parameters, to transform the problem to an optimal
filtering problem, isacommonly used techniquein fixed
parameter estimation. The parameters will be declared
as stochastic processes evolving in time. In Eq. 19,
a,, 0,and o, represent the assumed diffusion coefficients
associated with g, 3 and ¢ respectively. The incremental
form of the SDE-s corresponding to the 3-DOF linear
oscillator, after declaring k, and c, as additional state
variables, is given by

dx, = x,dt

dx, =a,dt + g,dB,
dx, =adt + 0,08,
dx; = a,dt + 0,dB, U
U
dx; =0, dB, 0
d=0,d8,  H
with initial conditions x (0) = x,,i 0[1,6]. The drift
coefficient functions are given by

(21)

a, = ——[(k +ky)% —K; X, (G +C,)%, —C,x5] %, J

m O

a :-é[—kle X —CX, FOX X (% X)) P (X )] -&;%

L1006 =) #3606 )] % :
=X -X)t - -

== Dot X% (% —%)] %, g

(22)

o, i 0[1, 3], represent the diffusion coefficients of the
associated additive noise processes; and, 0, and0,

represent the assumed diffusion coefficients of the SDE-
s governing the evolutions of the parameter states k, and
c, respectively. Note that the displacement and velocity
components in Egs. (17-22) are relative with respect to
the support.
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Using explicit forms of truncated Ito-Taylor fh s fhs s
expansions, maps for the displacement and velocity dB. (s,)ds I, dB, (s,)dsds | =
components of the substructure 2 of the 5-DOF linear I I and Treo I I I =
oscillator over theinterval (t,, t,,.) (with auniform step-
sizeh=t_ —t) may be shown to be:

[ [
4,5. Following Ito’sisometry, it may be shown that these
MSI-s are normal random variables [14] of the form

2

h 1
Xserny = Yo + Yoo + a0 — _E[ks(xlok —Xo) +Cs(Ayox _agk)]

S Dh h? hg%
h an = =
— 10l _&[(Uslsoo _U4|400)] 0l O O O 2 6|I|
° m 0’0 (O v n hiD
(23a) Ol ~ N @y 05 3 E[D
H OH o 0O N (24)
1 r O D Eh3 h4 h5|I|
Xiok+1) = K10k +a10kh _E[ks(ka _ng) +C5(a:LOk _agk)] 5 EE E 2_0%
h2
) 05l — m [(05|50 - 04|40)] In order to implement step (2) of the algorithm proposed
inthe previous section, (truncated) Ito-Taylor expansions
(230)  for the displacement and velocity components of the
Here I, 1,, I, 1,5, @d I, are multiple stochastic substructure 1 at the interface degrees of freedom (dof-
ti+h ) in the time interval t O (t,, t ] are required. These
integrals (MSI-s) given by = I dB.(s)  expansions presently take the following forms:
[

t? 1 t®
X4(tk +t) = Xk +X9kt +ang __[_k4x8k +(k4 +k5)X9k _kSXlOk —Cy 3y "(04 '*Cs)agk _CSa10k]€

[k+ts GHtss tk+tss.l
C5
+ dB,(s)ds - dB ds,ds{+ d dsd
o‘ﬁt{t{ 4 (5)ds J’J’J’ 4(S;)ds, Sﬁ 0 — J’J’J’ By(s;)ds,ds o5
t+tss

0y [ [[dB(s.)dscs

[

1 t?
X (L +1) = X +ag,t __[_k4X8k +(K, +Ks)Xo —KsXiow CiBg HC, 1G5)ag, _CSa10k]E

Dk+t ts |:| ttts tket S
a5 o8 [(s)-21G j Je B(sl)dsﬁ+03;4 J B +a S [ [omsys PP

tk &

The MSI-s can be modeled, as before, as zero mean normal random variables with readily derivable variances.

For the 3-DOF nonlinear oscillator, the truncated forms of the stochastic Taylor expansion for the displacement
and velocity components of the nonlinear substructure over the interval (tk ,tk+1] are given by:

h 1 @(w[ZXSk X+ %] + % 286 —(au *au)] + Hpe
2 M, He — %020~ %) 0 %000 X ) 6

1 P6(201 200 + G110 + Gl o) H 2% (X X)) Glao + B (26a)
® 5, ~ %" + O =% Egl et (2% ~ (e +%6)] Ol o

Yoy = Yo T X N + 85 —

+ ol
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X = X + 8 h_i@(7k[2xsk (Xax +X5k)] +)<9k[235k —(ay, +a6k)] + By
(k+1) k k m@gxsk gXZk Xlk) (X = Xai) + (%o ng) (X ~ )% 2

vol, - 1 B (201 + 011y +014) +[2X2k —(Xu +X3k)] Qly + H (26Db)
m%&k % )® + 00 = %) Bl e +H[ 266 = (X + %)) O

Displacement and velocity at the interface dof-s of substructure 1 of the 3-DOF nonlinear oscillator may now
be written as

X (1) = % + % (E =) +a, (t-t,)? _i[klx4k+cla4k + X (X = Xoi) +Xoi (A —85) 'E(t t)?
k T Xk k k

2 M B (X — sz) (X = Xs1) |:| 6
tss tss
+0, ﬁl’J’dBl(sl)ds B, ,UIdBl(SZ)dsidSﬁ+ a, X Iﬂ'dB (s,)dsds
(A [ (27a)

3tss tss tss

+ 0, V%) x2k) [[[B:(s,)dsds + o, Xf* = [ B (s )dsds + o fffeBu(s:)dscs

[P [ [P

1 K Xa G+ X (Xae = Xe) +Xo (R —3s1) 'E('[—tk)2

X, (1) = Xy 8y (t t)—
) “ ‘ Xi (X = X2k)2(x4k — X1 ) O 2

+J%M$q Mﬂmam+o‘ Mﬂwam
@[ m 1 H M 5 (27b)
[CTE

dB. (s )d XskdBdX“’kdd
o, P [ B (s)ds+ 0, %S [ B ()8 + 07 [ B ()0

T & T &

Similarly one may express the displacement and velocity at the interface dof-s of substructure: 2 also. The
truncated Ito-Taylor expansions for the displacement and velocity components of substructure 2 of the 3-DOF
linear oscillator may be shown to be of the form

2

_ o1 h?
Xy = Yo Xl + 85— —E[xw(xek ~Xg) *Xg (B —ask)]g +Glg

1 (2849)
_E Hx3k _)(Qk)0k3|400 _)(BkGZIZOO Xk c%'soo +(X6k _XSk) QGISOOH

1 h?
Xsgerny = X +aekh—ﬁ[x7k(xek ~Xg) X (B —ask)]g +
1 (28b)
_E er,k =X ) O Lap ~ Xk Ol g X5 Glgp +( X %) QQISOH

Expansions for displacement and velocity at the interface dof-s of substructure 1 of the 3-DOF linear oscillator
are given by
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t-t)°
Xz(t) = Xok +X5k(t _tk) *ag, ( zk)

tsS

+o, @[ _[de(&)dS—CZ = dez(sz)dads

B Bt
tss

0,2 [ [ [dB,(s)dsds + 0,

[ Kt b

X5 (t) = Xg +ag, (t —t,) _i[kz(xsk ~Xa) TG (85 —A) X (X5 ~Xg) X (s _aek)](t_T

@[dB () - 27 XBk HdB (sl)dsHHIl—IIdBl(sl)ds

+o —J’J’ng(sl)ds+0 X

tk [

Finally we observe that truncations of the Ito-Taylor
expansions have been so adjusted as to consistently
ensure that local orders of accuracy of the displacement
and velocity maps, in the above equations, are O(h®) and
O(h?) respectively. Since the state of the system is
presently being measured, the observation equation isin
adiscrete form: y, = h(x) +v,, v, being the vector of
measurement noise. However, if the measurement
equation isin the form of an SDE, this equation may as
well be discretized using Ito-Taylor expansions.

6. NUMERICAL |LLUSTRATIONS

Consistent with the developmentsin the last section, we
continue to work with the 5-DOF linear, 3-DOF
nonlinear, and 3-DOF linear oscillators. In particular, we
use the 5-DOF and 3-DOF nonlinear oscillatorsto bring
out the superior performance of the proposed RBPF in
state estimations vis-a-vis a full-fledged particle filter
without substructuring. It isknown that the Kalman filter
providesthe optimal solution for state estimation of linear
oscillators with additive Gaussian noises. Hence, given
the exact solution viaKaman filter, the 5-DOF oscill ator
may be well exploited to compare the relative numerical
performances of the RBPF and the standard particlefilter
for state estimation. Next, to demonstrate the potential
of the proposed method in parameter estimations, we use
the 3-DOF linear and nonlinear oscillators. The

_i[kz(xsk “Xu) TG (85 —8y) X (X Xei) e (B, _aGk)]

tss
Xk ([ [dB,(s,)dsds +
Jﬂ (s,)dsds + 0, =

X J’J’dB (s)ds+o,

(t _tk)3
6

tss

+01—jJ’J’dBl(sz)d%ds

tk ti &

tss

S [ [oB(s)dsds

T b

(299)

t)’

(29b)
Xs“ Ust(sl)ds

[P

governing equations of the 3-DOF linear system become
nonlinear when the parameters of substructure 2 are
declared as additional states. For the 3-DOF nonlinear
oscillator, on the other hand, nonlinearity islocalized in
substructure 2. These three examples together therefore
cover areasonable range of test cases of interest.

For all the state estimation problems, the support
displacement is assumed to be harmonic, i.e., xg(t) = Xgo
sin(At). However, for parameter estimation problems, the
support motion is taken to be a realization of the

> a sin(wt +8) where the

parametersa, w and 6, are appropriately chosen random
variables. Thefollowing parameter valuesare considered
for the 5-DOF linear oscillator: m = 100 kg, k = 30000
N/mandc =100 Ns/m (i = 1, 2,..., 5). The parameters of
the support displacement are assumed as Xy, = 0.01m and
A =14 rad/s, which is close to the first natural frequency
of the system. The process noise parameters are assumed

as 0, =0.01]X; | (1 =12,34) and oy =0.03| Xy

stochastic process X, (t) =

where |Xg |max is the maximum value of the realization of

|Xg(t)| over the time interval of interest. Measurements

onthevelocities of the 4" and 5" mass points are assumed
to be made. The following parameter values are
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considered for the 3-DOF nonlinear oscillator: m = m,
= 100 kg, k, = 30000 N/m, k, = 25000 N/m, a = 3000
N/m, B = 1x10° N/m?, ¢, = 60 Ns/m, ¢, = 50 Ns/m and
c = 75 Ng/m. For the state estimation problem, the
parameters of the process noise are chosen as

0, =0, =0.01| X; |ys and 0 =0.03| X, |, Whereasfor
the parameter estimation problem, their values are taken
as 0, =0, =0 =0.01| X, |, - The parameters of the

support displacement are taken to be X, =0.01m and

A = 20rad/s for the state estimation problem. The
displacement and velocity maps, given by Egs. (26a,b),
may be used for the state estimation problem of the 3-
DOF nonlinear system by setting X, = a, X, =3, X, = C
and 0, = 0, = g_ = 0. Measurements of all velocity
components are assumed to be made in the state
estimation problem. All the systems considered here are
assumed to start from rest. Moreover theinitia conditions
are treated as deterministic.

For parameter estimation of the 3-DOF linear
oscillator, the chosen reference parameter values are:

m =m, =100kg, m, =75kg, K =k; =25000 N/m,

k; =15000 N/m, ¢, =c, =150Ns/m and ¢, =100 Ns/m.
The values of the process noise parameters are taken as

o =O.01|5<g|max (i=123). Moreover the following

random parameters of the support motion are assumed:
a isuniformly distributed in the range [-0.005, 0.005]m,
while w and 8, are uniformly distributed in the ranges
[5, 30] rad/sand [0, 90]° respectively. Value of nistaken
as 50. The velocities of the 3rd and 4th mass points
constitute the measurements. The initial pdf of x(i.e.,
k,) is assumed to be uniformly distributed in the range

[0.8k;,1.8k;] and x (i.e., c,) is assumed to be uniformly

distributed in the range [0.4c;,1.2c;] . It may be noted

that the deviation of the mean of theinitial pdf from the
true value is 30% for x, and 20% for x,. Finally, for the
parameter estimation of the 3-DOF nonlinear oscillator,
the following values are used for the components of the
multi-frequency harmonic support motion: a, w and 6,
are assumed to be uniformly distributed in the ranges
[-0.005, 0.005]m, [10, 50]rad/sand [0, 90]° respectively.
We use n = 50. In addition to the velocity measurements
at al dof-s, the displacement of the substructure 2 isalso
measured. The initia pdf-s of x (i.e., a), x(i.e., B) and
X (i.€., €) are assumed to be uniformly distributed in the

ranges [0.8a", 1.4a"], [0.8(3", 1.43"] and [0.6¢", 1.2C"]
respectively. Note that o, B* and ¢’ represent the
reference parameter values of o, 3 and ¢ respectively.
Here, for all the parameters, the mean of theinitial pdf is
consistently off by 10% from the true value. In al the
parameter estimation problems, the diffusion coefficients
of the SDE-s corresponding to the parameter states (i.e.,
Ok, and o, for the 3-DOF linear oscillator; and, o, g,
and o_ for the 3-DOF nonlinear oscillator) are assumed
to betime varying with aslow decay given by the genera
form o(t) = 0.2 P exp(-0.5t), where P refers to the true
value of the parameter. Due to the decaying nature of
diffusion coefficients of the parameter SDE-s, subset of
the state space containing the particles (representing the
parameter states) shrinks asthe estimation progresses and
hence one may expect a converging estimate.

In the present study all the measurements are
generated synthetically. The standard deviation of the
measurement noise is assumed to be 7.5% of the
maximum absolute value of the measured quantity for
all the state estimation problems, while it is reduced to
5% for parameter estimation. In all the examples
presented here, a uniform step size h is used. While we
use h=0.005 sfor the5-DOF linear and 3-DOF nonlinear
oscillators, we increase the step size to h = 0.01 sfor the
3-DOF linear system. The ensembl e size used isamodest
N = 500 for all state estimation problems. However, for
the parameter estimation problems of the 3-DOF linear
and 3-DOF nonlinear oscillators, the ensemble sizes are
N = 3000 and N = 6000 respectively.

The results of state estimation of the 5-DOF linear
system are shown in Figs. 5 and 6. Fig. 5 shows the
measured quantitiesand their estimate using the proposed
RBPF. Excellent convergence of the mean of the estimate
can be observed. Fig. 6 shows a comparison of variances
of the estimates of displacements and velocities at the 4"
and 5" dof-s using the standard particle filter, the
proposed RBPF and the Kalman filter. We observe that
the RBPF estimates are consistently closer to the optimal
estimate. A significantly superior performance of the
proposed RBPF over the standard particlefilter isclearly
noticeable. Figs. 7 and 8 show the results of state
estimations of the 3-DOF nonlinear oscillator. The
measured velocities at al dof-s and their estimates using
the novel RBPF are shown in Fig. 7. Variances of the
states estimated using the standard particle filter and the
RBPF are compared in Fig. 8. Once more, a substantial
reduction in the variance of the RBPF-based smulation
over that viathe standard particle filter is observed. Figs

90‘
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9 through 11 show the results of parameter estimation of
the 3-DOF linear oscillator. Fig. 9 shows time histories
of mean and standard deviation of the estimate of k,
corresponding to five different runs of the same program.
Note that all the random variables required for the
simulation are generated independently in each run of
the program. Figure 10 shows similar plots for the
estimation of c,. Even though these estimates do not
converge to the true values of the associated parameters
(which is only natural in the presence of noises), the
robustness of the proposed RBPF is observablefrom these
plots. Fig. 11 showsthe initia and final pdf-s (stationary
marginals) of the parameters. One readily observes the
considerable reduction in the variance of the estimates
from their initial (assumed) values; simultaneously as
the mean values converge close to their true values. The
results of parameter estimation of the 3-DOF nonlinear
oscillator are given in Figs. 12-15. Time histories of
means and standard deviations of the estimates of a, 3
and c for five different smulations are shown in Figs.

12, 13 and 14 respectively. Theinitial and final pdf-s of
the parameters are shown in Fig. 15. The robustness and
accuracy of the new RBPF in parameter estimation is
again evident from these plots.

7. CoNCLUDING REMARKS

A novel and numerically accurate form of Rao-
Blackwellized particle filter is proposed for state and
parameter estimations for a class of uncertain dynamical
systems, typically with localized nonlinearity. The
system to be identified is first decomposed into linear
and nonlinear substructures which are mutually coupled.
While the estimation using particle filters is restricted
only to the states of nonlinear substructures, the states
of complementary linear substructures are estimated
using an ensemble of Kalman filters, thus enabling usto
get a solution close to the optimal with lesser sampling
variance for a given ensemble size. Here the sampling
variance owes its origin not just to the finiteness of
ensemble sizes, but aso to truncation errors of the finite
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precision arithmetic and approximations due to truncated
Ito-Taylor expansions. It is important to note that the
standard Rao-Blackwellization is not directly applicable
to substructures of a mechanical system as they do not
usually correspond to each other via a cascading effect.
To the authors' knowledge, the present work constitutes
the first attempt at exploiting Rao-Blackwellization in
the context of state/parameter estimations of amechanical
oscillator with a rational framework for handling the
coupling of the associated substructures. The limited
numerical illustrations on a few low-dimensional
oscillators emphasize the robustness and numerical
superiority of the proposed RBPF over the standard
particle filter and provide an adequate pointer to the
applicability of the method to higher dimensional
systems. The new RBPF has the potential to be applied
for state and parameter estimations of a mgjority of
engineering structures, since nonlinearity generally

appears in alocalized form. We have presently used the
bootstrap filter for particle filtering, and, with more
efficient particle filters, the proposed RBPF may as well
offer arobust tool for online parameter estimations.
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