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A B S T R A C T

New ground motion prediction equation for the active Himalayan region for a wide range of moment magnitude
(Mw 4–9) and distance (10–750 km) is developed. For simulating the synthetic ground motions; source, path, and
site terms are derived using the Fourier amplitude spectrum of the recorded ground motion data. Uncertainty of
input parameters is propagated through simulation by random sampling of the corresponding distribution of
input parameters. Synthetic and recorded data are regressed using random-effect maximum likelihood regression
algorithm by determining the compatible functional form. Sensitivity analysis is used in determining the impact
of uncertainty of each input parameter on standard deviation of the regression residuals about the median
prediction equation. Major contribution to total uncertainty is from Kappa factor in case of within-event terms
and from stress drop in case of event-to-event variability. Predicted and recorded response spectra is matching
within±1 standard deviation for the entire period range.

1. Introduction

The Himalayan region and the contiguous Sindhu-Ganga alluvial
plain to the south of it have been associated with high level of seis-
micity. Many of the researchers [1,2] have highlighted the possibility of
occurrence of the large magnitude earthquakes (Mw >8) in future in
the Himalayan region. Moreover, to develop the representative earth-
quake hazard prediction map for the Northern India, a robust ground
motion prediction equation (GMPE) is needed. Hence, there is a need
for coordinated scientific efforts for reliable seismic hazard prediction
so that the earthquake hazard can be minimized through effective
disaster planning and management, and by low-cost mitigation
methods.

GMPEs play an important role in defining the conditional distribu-
tion of ground-motion amplitudes for each rupture scenario considered
within the hazard calculations. For the Himalayan region, strong mo-
tion data for wide range of magnitudes and hypocentral distances are
not available as of today. The lack of recorded data makes the hazard
estimation more challenging especially for the Himalayan region,
having such a diverse seismology [6]. However, the advancement in
ground motion simulation algorithms and regression techniques help to
alleviate this issue theoretically. Various researchers [e.g. 3, 4, 5] have
developed GMPEs that are based on the stochastic simulations which
have been calibrated using recorded weak or strong ground motion.

Proper calibration of GMPE is more challenging with the variability in
the input parameters for synthetic simulation of ground motion. It is
resolved by studying the impact of distribution of stochastic models’
inputs parameters by estimating the between-event and within-event
ground motion variability.

Based on an available recorded and simulated ground motions for
the Himalayan region, various researchers have derived the region-
specific GMPEs. These GMPEs were developed by Singh et al. [6],
Sharma [7], Nath et al. [8], Sharma and Bungum [9], Das et al. [10],
Baruah et al. [11], Sharma et al. [12], Gupta [13] and Anbazhagan
et al. [14] using simulated and recorded earthquake data. In addition to
these equations, National Disaster Management Authority [15], Gov-
ernment of India, developed region-specific GMPEs for probabilistic
seismic hazard mapping of India considering only simulated data.
However, most of these GMPEs are not applicable for distances (hy-
pocentral or epicentral) larger than 100 km. While studying the iso-
seismal map of large earthquakes ( >M 7w ) in the Himalayan region, it
has been observed that macroseismic intensity of V-VI is reported for
distance more than 500 km. For example, for 1905 Kangra earthquake
(Mw 7.8) and 1950 Assam earthquake (Mw 8.7 ), macroseismic intensity
of V-VI is observed for distance more than 500 km. Hence, GMPEs de-
veloped for distance of less than 100 km would not be suitable for
ground-motion estimation at large distances. Moreover, the input
parameters for simulating the synthetic ground motions are either
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assumed or used from the other active regions in developing the Hi-
malayan GMPE. However, these parameters are revisited and derived in
the present study.

The main aim of the present study is to develop a robust GMPE for
the Himalayan region by using different sets of seismological para-
meters. Fourier Amplitude Spectrum (FAS) of the recorded ground
motions have been studied, and region-dependent source and site
parameters i.e. stress drop, anelastic attenuation, kappa and corner
frequency have been derived explicitly for earthquakes in the
Himalayan region. These parameters have been further used for sto-
chastic simulation of the ground motion database. The simulation of
PGA and spectral acceleration values at period 0.01–10 s was performed
for a wide Mw range (4–9) and hypocentral distance range (10–750 km)
for rock condition having shear wave velocity up to 30m depth (VS30) of
2000 m/s. The functional form suitable for the region that represents
magnitude and hypocentral distance scaling was used for deriving a
new GMPE. Further, a discussion has been made on the region-based
input parameters and captures the probability distribution of these
parameters. The impact of these distributions were studied for different
frequencies by varying the magnitude-distance pair. All the input
parameters were considered as random variables, and the reduction of
uncertainty in the simulation was accomplished through random sam-
pling of the input parameters distribution. A Monte Carlo scheme has
been used for determining the confidence interval and standard error in
regression parameters. Sensitivity analysis was performed to assess the
impact of the uncertainty of each input parameter on the final GMPE
uncertainty. Finally, the new GMPE was tested with the recorded strong
motion data.

2. Study area and instrumented ground motion data

The study area mainly lies in the Himalayan region that includes
Kashmir Himalayan (KH), Kumaon-Garhwal Himalayan (KGH), Bihar-
Nepal Himalaya (BNH) and Northeastern part of Himalayan region
(NEH). The Himalayan belt is about 2900 km long and it is the highest

mountain chain in the world. It is also one of the most challenging tec-
tonic settings in geoscience due to its complex seismotectonic setting and
frequent seismogenesis. Continuous collision of Indian plate with the
Asian plate at a rate of 15–20mm/year [1] results in building of high
stress in the Indian plate. The Himalayan geodynamics is the cause of the
largest earthquakes (1897 Assam, 1905 Kangra, 1934 Bihar-Nepal, 1950
Assam, 2011 Sikkim, 2015 Nepal earthquake) in the foothills and north
of the Main Boundary Thrust (MBT). These earthquakes were well stu-
died by various authors [2,16,17] and it was commented that these
earthquakes were failed to rupture to the surface and probably trans-
ferred the stress towards the Himalayan foothills. Bilham et al. [1]
concluded the potential slip in the range of 9–14m with the expected
earthquake as large as Mw 8.9 in the KH region. BNH has a dense cluster
of seismicity near to the Main Central Thrust (MCT) and the Himalayan
Frontal Thrust (HFT). It is also close to the epicenter of 1934 Nepal
earthquake and associated with the stress concentration zones [18]. The
possibility of the occurrence of the largest earthquake in NEH is pre-
dicted by Srivastava et al. [19]. Studying the micro-seismicity, paleo-
seismicity, GPS and variation in local tectonics, Srivastava et al. [19]
demarked the whole Himalayan region into 10 seismic gaps with the
possibility of occurrence of moderate to large earthquake. Hence, while
developing a new GMPE, large earthquakes need to be simulated in these
seismic gaps, so that hazard estimation from any future earthquake
(Mw >8) can be evaluated. Large number of active faults and cluster of
small to large events (4≪Mw < <7.0) occurring in the Himalayan re-
gion demands the development of new GMPE to estimate the hazard in
the highly populated contiguous Sindhu-Ganga alluvial plain.

Recorded data used in this study consists of 78 strong to moderate
earthquakes that occurred in the Himalayan region from 1988 to 2015
with a Mw of 4.5–7.8 and a hypocentral distance (R) between 10 and
500 km. The strong-motion data was collected from the strong motion
instrumentation network of Indian Institute of Technology, Roorkee
(IITR) (http://www.pesmos.in/, last accessed March 2017) and also
from Virtual Data Center (VDC) (https://strongmotioncenter.org/vdc/
scripts/default.plx, last accessed December 2017). These stations cover

Fig. 1. Location of the recording stations (plus sign) and epicenter of the recorded earthquakes used in the study including historic earthquake occurred in the
Himalayan region. The assigning of apparent station for simulating the ground motion is given in the top right, the explanation is given in the text.
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the Indian Himalayan range from Jammu and Kashmir to Meghalaya
(marked as plus sign in Fig. 1). Detailed description of these strong
motion accelerographs and data processing of the waveforms are given
in Kumar et al. [50]. Out of the total 520 ground motion recordings,
252 were collected from the IITR, 68 ground motions recorded before
2005 were collected from VDC and the rest 200 from Indian seismic and
GNSS network (http://www.isgn.gov.in/ISGN/, last accessed December
2018). Out of 520 recordings, 241 are rock recordings (VS30 760m/s)
and the remaining 279 are soil recordings [52]. Only rock recordings
are used in the present study. The processing of the strong motion data
involved baseline correction, instrumental scaling, and frequency fil-
tering. The strong motion database was processed according to the
procedure suggested by Boore and Bommer [20] and Joshi et al. [21].
The detail of the instruments can be referred from Kumar et al. [50] and
Indian Seismic and GNSS network website (http://www.isgn.gov.in/
ISGN/). The obtained database was corrected for baseline, instrumental
response and amplification of recorder (Dr Dipankar Saikai, personal
comm. 2017). The obtained database was band passed for the frequency
range of 0.5–35 Hz [21,50]. Database with signal-to-noise ratios greater
than 3 were used for further analysis [53].

3. Seismological model parameters

Following Boore [22], the amplitude spectrum of ground motion
A f( ) can be written as product of a source function, f( ), a propagation
path term, P f( ) and a site function, S f( ) in the frequency domain

=A M R V f M f P R f S f( , , , ) ( , ) ( , ) ( )w S w30 (1)

The propagation path term, P f( ) can be expressed as

=P f Ge( )
fR

Q f( ) (2)

Where, G is the geometric spreading and Q(f) and are the S-wave
frequency dependent quality factor and velocity of the medium re-
spectively. Following Boore [22], a trilinear form of geometric
spreading can be specified as
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Rx1 and Rx2 are the two reference distances and b1, b2 and b3 are the
geometric spreading coefficients for the trilinear functional form cor-
responding to the near-field and far-field reference distances. The
quality factor Q(f) can be defined as

=Q f Q f
f

( ) o
o

n

(4)

Here, fo is the reference frequency and is generally taken as 1 Hz [23]
and Qo is the value of Q at 1 Hz, n is the frequency parameter, which is
close to 1 and varies from region to region; depending on heterogeneity
of the medium [23]. The near surface attenuation (P f( )) is given by
Anderson and Hough [24] as:

=P f f( ) exp( ) (5)

Here, is the kappa factor, typically an indicator that differentiates the
older/harder rock from the younger upper crustal formations. is low
in case of older/harder rock as compared to younger upper crustal
formation. Beresnev and Atkinson [25] employed finite-fault modelling
for simulating strong ground motion. In this algorithm, sub-source
moment depends on the sub fault dimensions that can be determined
using a relation given by Beresnev and Atkinson [25]. A large un-
certainty is associated with the suggested relations due to the scarcity of
large earthquake recordings. To overcome this constraint, Motazedian
and Atkinson [26] introduced a concept of dynamic corner frequency

and enhanced the algorithm. The improved algorithm conserves the
radiated energy at a higher frequency at any sampling of subfault size
thereby controlling the relative amplitude of higher versus lower fre-
quencies [8]. The source spectrum for the nth subfault is given as
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Here, C is the scaling factor, M n0 is the seismic moment in dyne cen-
timeters, Hn is the scaling factor responsible for converging the energy
at the high-frequency spectral level of subfault and f n0 is the dynamic
corner frequency. The scaling factor C can be defined as follow

=C
R 2
4

j
3 (7)

Here, R j, and refer to radiation pattern, shear wave velocity and
average crustal density (g/cm3), respectively. The coefficient 2 in
equation (7) arises as the product of free-surface site amplification and
partitioning of energy in orthogonal directions [5].The nth subfault
seismic moment (M n0 ) can be calculated using slip distribution as
follow:

=M M D
Dn

o n

n
0

(8)

where, Dn corresponding to the relative slip weight of the nth subfault,
Mo is the seismic moment, and Dn denotes the total slip of the fault
during the entire rupture process. The dynamic corner frequency and
stress drop is related to each other as per Boore [22,27].

= ×f 4.9 10on
N t N M6[ ( )] ( / )R o1/3 1/3 1/3

(9)

Here, N t( )R is the number of rupture subfaults at a time, t . N refers to
the total number of subfaults totaling to N t( )R at the end of rupture and

is the stress drop. The scaling function in equation (6) is defined by
Motazedian and Atkinson [26] as
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Here, Mon is the seismic moment of the nth subsource, f0 is the corner
frequency of the entire fault, f0n is the corner frequency of the nth
subsource, and j is the counter over the frequency. The detailed deri-
vation of stress model, attenuation model and duration from FAS of the
recorded waveform in the Himalayan region is explained further.

3.1. Attenuation model

The attenuation parameters, i.e., geometric spreading and anelastic
attenuation using FAS were derived by dividing the whole Himalayan
region into four parts, such as KH, KGH, BNH and NEH, considering the
variability in seismicity [29]. In the bilinear functional form, the rate of
attenuation due to geometric spreading at a moderate distance is
equivalent to the rate near the source. Additionally, Atkinson (2004)
observed an incremental change in the amplitude of the FAS in the
medium distance range (70–140 km) caused by post-critical reflection
by the Moho and Conrad discontinuities. Therefore, trilinear geometric
attenuation form was adopted in this study. Using a genetic algorithm,
geometric spreading was derived by considering a trilinear model (Eq.
(3)) with different decay coefficients for far source and near field. Si-
milarly, frequency dependent quality factor (Eq. (4)) was also esti-
mated. Genetic algorithm (GA), developed by Holland (1975) and
Goldberg (1989) and used by Zandieh and Pezeshk [28] for deriving the
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attenuation parameters for New Madrid seismic zone was used here for
determining attenuation parameters. For estimating the variability in
the attenuation model, two methods can be used: one is based on a
posterior covariance matrix and the other on bootstrap method [28]. In
this study, bootstrap method has been used, since the modelling error
was not representing the actual variability in the posterior covariance
matrix. From a total of 520 recorded ground motions, 80% has been
chosen from random selection of earthquake in all the four regions and
shown in Fig. 1. This operation has been done 200 times for each da-
taset, and GA was used for each dataset as given by Bajaj et al. [29]. In
the GA, the constraints were only applied to b1, b2 and b3 in trilinear-
hinged functional form (equation (3)). The values used for constraints
were: b0.5 2.01 , b0.5 0.52 and b0.5 1.33 . The para-
meters Rx1 and Rx2 in equation (3) were not treated as variables in the
GA. Instead, the GA process was repeated for all combinations of

= ……R 10, 20, 30 150x1 and = ……R 70, 80, 90 200x2 . The overlapping
values of Rx1 and Rx2 were also included to evaluate the possibility of
the bilinear-hinged functional form for geometric spreading. These
values for constraints and parameters (Rx1 and Rx2) were selected based
on similar studies conducted for similar tectonic regions (i.e., active
subduction zones). The range of Rx1 and Rx2 was tested with the re-
corded ground motions. By applying different combination of the
parameters, source amplitude corresponding to site was estimated. For
each of the constraints, the residual between the observed and the
predicted spectra have been calculated. The solution having the
minimum mean absolute value of the residual is the best combination.
In other words, the combination of values for b1, b2, b3, Rx1 and Rx2 that
resulted in same source term for stations that recorded the same event
was considered. Source, site, and path terms are correlated, and there is
always a trade-off between these terms. Therefore, to reduce the trade-
off between these parameters, the geometric spreading is determined
using GA and further quality factor is estimated empirically. One must
be cautioned against using the path model derived in this study along
with the source or site parameters deduced from other studies assuming
different types of the path models. Further the source spectra were
corrected for geometric attenuation and regressed with R to calculate
the frequency dependent Quality factor [28,29]. The attenuation
parameters calculated for all four regions are given in Table 1. Not
significant regional dependency is observed as far as these parameters
are concerned expect in case of KGH and BNH. However, Qo and n
values have a significant variation over the four regions. The near
surface attenuation for the Himalayan region has been determined
using the procedure defined by Anderson and Hough [24]. The de-
termined factor for the Himalayan region is 0.01 s.

3.2. Stress drop

Many studies reported that the stress drop varies with the size of the
earthquake [30], whereas studies on the large earthquakes concluded
that stress parameters remain constant [31]. However, the dependency
of the stress drop on the size of the earthquake is highly debatable [4].
In this study, the dependency of stress drop on the Mw for the Hima-
layan region has been examined. The stress drop has been calculated as
per the procedure defined by Boore et al. [31]. For a given earthquake
and oscillator period, motions were simulated at the distance of each
recording with stress drop ranging from 1.0 bars to 1000 bars with an

increment of 2. Further, residual was determined for each observation
for a given stress drop. The arithmetic average of all residuals for rock
stations that recorded the earthquake was computed, treating each
observation as an independent variable [31]. Similar to Boore et al.
[31] quadratic fit was used to the average residual, logarithmic of stress
drop pairs of values, and solved for the value of stress drop that gave
zero residual.

Fig. 2 (a) shows the obtained stress drop versus magnitude for the
whole Himalayan region. The stress drops obtained in this study has
been compared with the stress drop obtained by various authors for the
same region. From this study, variability in the stress drop has been
seen for <M 5.5w . However, an increasing trend in the stress drop has
been observed with the increase in magnitude. Drawing a reliable
conclusion for larger magnitudes is difficult because the recorded data
for >M 5.5w are not sufficient.

The stress drop value derived by Nath et al. [8] for historical
earthquakes are plotted in Fig. 2. The calculated stress drop of earth-
quake in the BHN region are larger than the eastern part of the Hi-
malaya. Further, the average value up to 5.5 Mw is also shown in Fig. 2
(a), and it observes that, earthquakes near to Kashmir and Sikkim re-
gion has the maximum stress drop value, whereas, KGH has the lowest,
comparing different regions of the Himalaya. Based on the global study
of large magnitudes, Allmann and Shearer [32] suggested that for the
larger magnitudes the stress drop remains constant, similar assumption
is considered by Drouet and Cotton [4]. Furthermore, the approximate
mean value of variation of stress drop of 3MPa and 6MPa for interplate
and intraplate region respectively, was reported by Allmann and
Shearer [32]. Based on PEER NGA database, Drouet and Cotton [4]
reported a stress-drop value for large events approximately varying
between 0.1 and 10MPa. Considering both studies and based on the
observations of variation of stress drop with magnitude; (Fig. 2) at large
magnitudes a constant stress drop has been assumed at three values that
are 50, 100 and 150 bars. Finally, bilinear model for stress drop has
been used with kink point at 5.5 Mw. The equations derived between
stress drop and moment magnitude is shown in Fig. 2 (b). The standard
deviation in the stress drop value is studied with respect to magnitude
and, standard deviation of 0.2–0.5 in natural logarithm scale is ob-
tained.

3.3. Duration model

Another important parameter in the simulation of ground motion is
the path duration function. The total duration (Td) is the combination of
the source duration (Ts) which is assumed to be the reciprocal of corner
frequency [22], and path duration (Tp) which relates to propagation
effects and the other effect linked to the site condition and complex
source effect [22]. Generally, the observed Td is used as the interval,
between the time at which the integral reaches 5% and 95% of the
maximum and 5% and 75% of the maximum. In the present study, as
described in Boore and Thompson [33], the duration was computed
using either acceleration or velocity database using D 95. D 95 is defined
as =D D D2( )95 80 20 ; where D80 and D20 are the times at which the
cumulative integral of acceleration squared reaches 20% and 80% of
the final value, respectively [33]. To estimate the path duration (Tp) the
source duration, i.e. inverse of corner frequency is subtracted from the
total duration [33]. The corner frequency has been estimated by the

Table 1
Attenuation model parameter.

Region b1 b2 b3 Rx1 Rx2 Qo n

KH 1.09 ± 0.07 -0.01 0.52 ± 0.05 50 ± 15 140 ± 25 214 ± 8.52 0.75 ± 0.12 0.018
BNH 1.11 ± 0.08 -0.02 0.45 ± 0.05 40 ± 10 160 ± 25 108 ± 10.72 0.62 ± 0.10 0.015
KGH 1.05 ± 0.07 -0.15 0.48 ± 0.05 70 ± 15 100 ± 15 76 ± 9.87 1.31 ± 0.11 0.011
NEH 1.02 ± 0.09 -0.01 0.58 ± 0.05 60 ± 10 140 ± 15 186 ± 12.31 0.86 ± 0.11 0.016
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Fig. 2. (a) Inverted stress drops versus moment magnitude from the present and previous study for different regions of the Himalaya. The large symbols represent the
average stress drop value for different regions up to 5.5 moment magnitude and the filled triangles represent the historic earthquakes (Nath et al., 2009), (b) Models
for stress parameter derived from average stress value for small-events and three stress drop value (50, 100 and 150 bars) for whole Himalayan regions.

Fig. 3. Path Duration computed using the recorded data set of the Himalayan region as a function of hypocentral distance using D95 energy criteria. The average with
error bars at different distances is shown and the two-segment linear fit of the Himalayan data is compared with the previous studies of different region but same
seismotectonic.
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method proposed by Andrews [51].
Fig. 3 shows the variation of path duration using D95 and based on

the database of acceleration for the entire Himalayan region. Similar
results have been studied for the velocity. As expected, velocity and
acceleration lead to similar results. It was also observed from the ana-
lysis that a two-segment linear model fits well with the average data per
distance bin (See Fig. 3), with a kink point at 60 km.

The whole Himalayan data recorded at rock site has been used in
deriving the path duration model. Consistency between output and
input path duration was checked from the stochastic simulation of the
ground motion for different combinations of magnitude and distances.
The input path duration (using eq. (11)) and output path duration
(computed using the synthetic ground motion) was compared. It was
observed from the comparison that for small magnitudes the input and
output durations are almost similar but for the high magnitudes
( >M 5.5w ), the output duration is approximately 0.94 of the input
durations. Similar results were found by Edward and Fӓh [3], Drouet
and Cotton [4] and Singh et al. [5]. Hence, the input model was ad-
justed by a factor of 1.05 for D95 energy model [4]. The final duration
model can be expressed as

= × <
+ ×T R R km

R R km
16.8/60, ˆ 60

16.8 0.05 ( 60), ˆ 60p
h h

h h (11)

Here, Rh is the hypocentral distance.
The uncertainty in the path duration has been carried out using the

uniform distribution on the duration value at the kink point, with a
standard deviation of 6.5 s and on the slope of the last segment, using a
standard deviation half of its value which is consistent with Fig. 3.
Fig. 3 shows the comparison of variation of duration with respect to
hypocentral distance for the new equation and the existing worldwide
equations. Most of the duration equations are valid up to 300 kms (see
Fig. 3), however these equations have been extrapolated till 750 kms to
observe the variation of existing equation with the newly derived
equation. The current duration model lies in between duration model
proposed by Drouet and Cotton [4] and Singh et al. [5] respectively for
French Alps and Northeast India.

4. Simulations and GMPE for the Himalayan region at hard-rock
level

Initially, 23 recorded (Table 2) and 4 historic earthquakes (marked
as Hexagon in Fig. 1, Table 3a) for a given magnitude and from 10 to
750 km as epicentral distance are simulated as per Motazedian and
Atkinson [26] and Boore [27] using the parameters given in Tables 2
and 3. The parameters used for the simulation of the historical earth-
quakes is given as Table 3a. The recorded earthquakes could not cover
the entire range of magnitude and distance for developing a new GMPE.
Additionally, ground motions were simulated for Mw ranging from 4 to
9, using 0.1 unit step and distance range of 10–750 km. Ranges of
stochastic input model parameters used in simulating ground motions
are reported in Table 3b.

For simulating ground motions, a random fault orientation is de-
fined i.e. strike and dip, with the dip constrained to be greater than 10,
based on the reported dip value for recorded earthquakes. There is no
clear evidence of predominant focal mechanism in the entire
Himalayan region, except strike-slip and thrust faulting in the eastern
part of Himalaya and Nepal region [18,34]. A fictitious fault me-
chanism is assigned based on the dip angle i.e. for reverse mechanism a

Table 2
Significant earthquakes in the Himalayan region considered for the study with source parameter for each event.

S. No. Earthquake (EQ) Lat. Long. Mw Strike Dip Focal Depth Source

1 1897 Shilong EQ 26 91 8.1 292 40 35 Nath et al. [8]
2 1905 Kangra EQ 32.5 76.6 7.8 322 55 18 Singh [6]
3 1934 Bihar Nepal EQ 26.6 86.8 8 100 30 20 Nath et al. [8]
4 1950 Assam EQ 28.38 96.68 8.7 284 45 35 Nath et al. [8]
5 1986 NE India EQ 25.42 92.08 5.4 253 20 43 Singh [6]
6 1986 Dharmsala EQ 32.18 76.29 5.4 299 19 7 CMT Harward
7 1987 India-Burma EQ 25.27 94.2 5.9 34 32 50 Singh [6]
8 1988 India-Bangaladesh 24.64 91.51 6 110 28 15 Singh [6]
9 1988 Manipur EQ 25.15 95.13 7.1 284 45 90 Nath et al. [8]
10 1991 Uttarkashi EQ 30.75 78.86 6.8 317 14 15 CMT Harward
11 1999 Chamoli EQ 30.41 79.42 6.5 280 7 21 CMT Harward
12 2005 Kashmir EQ 34.37 73.47 7.6 318 29 15 Raghukanth [47]
13 2005 Chamoli EQ 30.9 79.3 5.4 280 7 25 CMT Harward
14 2007 Uttarkashi EQ 31.2 78.2 5.3 317 14 33 CMT Harward
15 2008 Uttarakhand EQ 30.24 80.35 5.1 333 59 10 CMT Harvard
16 2009 Uttarkashi EQ 30.87 79.05 4.7 263 66 52 CMT Harvard
17 2009 Bhutan EQ 27.2 91.62 5.2 293 7 5 CMT Harvard
18 2009 Manipur EQ 25.4 94.8 5.3 261 52 10 CMT Harvard
19 2009 Myanmar EQ 24.25 94.77 5.5 241 62 115 CMT Harvard
20 2009 MIB EQ 24.31 94.84 5.5 224 66 80 CMT Harvard
21 2009 Bhutan EQ 27.2 91.63 6.1 281 6 15 CMT Harvard
22 2010 Tibet EQ 28.41 86.77 5.1 108 75 80 CMT Harvard
23 2010 Myanmar EQ 22.99 94.62 5.6 103 32 114.7 CMT Harvard
24 2010 Hindukush EQ 36.44 70.79 6.2 261 32 207.7 CMT Harvard
25 2011 India Nepal EQ 29.43 80.71 5.4 318 30 18.8 CMT Harvard
26 2011 MIB EQ 24.8 94.6 6.3 143 48 103.5 CMT Harvard
27 2011 Sikkim EQ 27.44 88.35 6.9 216 72 46 CMT Harvard

Table 3a
Parameters used for Historic earthquake.

Parameters 1897 Shillong 1905 Kangra 1934 Bihar
Nepal

1950 Assam

Strike 292° 322° 100° 284°
Dip 40° 55° 30° 45°
Depth 35 18 20 35
Fault length 330 100 312 200
Fault width 150 55 80 80
Stress (bars) 159 135 275 66
Attenuation

Model
NEH (Table 1) KGH (Table 1) BNH

(Table 1)
NEH (Table 1)

Duration
model = × <

+ ×T R R km
R R km

16.8/60, 60
16.8 0.05 ( 60), 60p

h h
h h

References Nath et al. [8] Singh (1987) Nath et al.
[8]

Nath et al. [8]
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dip lower than 40°, for strike-slip mechanism dip greater than 75° and
normal mechanism, otherwise [4].

Another important factor in the synthetic simulation of ground
motions is the focal depth which is estimated based on the updated
catalog of earthquake events for the entire Himalayan region. On
studying the focal depth for all the four regions, it was observed that for
events with >M 6.0w , the depth varies from 5 to 40 km and for

<M 6.0w , the depth varies from 1.1 to 290 km. Most of the recorded
events with a hypocentral depth more than 60 km have an estimation
error of about ± 20 km (USGS). Only for few events, >M 6.0w , focal
depth of more than 60 km is available, which is not considered in the
present study. To capture the variability in the focal depth for the si-
mulated earthquakes, a normal distribution is assumed with mean and
standard deviation as 30± 10 for >M 6.0w and 50± 10 for <M 6.0w is
considered.

Fault dimensions (rupture length and rupture width) are estimated
from the Blaser et al. [35] relationships between fault dimensions and
Mw. To include the additional variability in the fault dimensions, for
each simulation of ground motion, the input Mw is sampled using a
normal distribution with standard deviation of 0.3 [4]. This allows

simulating fault plane with corresponding orientation of different di-
mensions for same magnitude. Blaser et al. [35] relationships are valid
for >M 4.8w . Hence, the equation [35] were extrapolated beyond their
validity range, especially for small magnitudes. The extrapolation did
not have a strong influence on the simulations because of very small
fault extension for small magnitudes [4]. Fifty different rupture or-
ientation are simulated for each moment magnitude with bin size 0.1
Mw.

Considering the given focal mechanism and magnitude, epicentral
distance from 10 to 750 km and source-to-site azimuths from 0° to 360°
are simulated. The maximum epicentral distance is selected as 750 km
by studying the damage distribution map of the pre-instrumented
earthquake (1934 Bihar Nepal, 1950 Assam earthquake) and recent
2015 Nepal earthquake. Past earthquake events have shown that the
Himalayan region is experiencing damages in an area covering more
than 600 km radius around the epicenter. Hence, a GMPE needs to be
developed for a large range of hypocentral distance. The concept of
apparent station (AS) has been used for simulating each event at dif-
ferent hypocentral distance [14]. The locations of AS have been se-
lected in such a way that the entire hypocentral distance of 750 km can

Table 3b
Input parameters used in the simulation.

S. No. Parameter Distribution Mean Standard
Deviation

1 Attenuation
Parameter

Normal Table 1 for corresponding region

2 Stress Drop
(MPa)

Log-Normal
= + <M M

Mln( ) 0.36 0.008, 5.5
150, 5.5
w w

w
150 = + <M M

Mln( ) 0.32 0.147, 5.5
100, 5.5
w w

w
100 = + <M M

Mln( ) 0.25 0.383, 5.5
50, 5.5

w w
w

50
0.2 to 0.5

3 Duration (s) Normal
= × <

+ ×T R R km
R R km

16.8/60, 60
16.8 0.05 ( 60), 60p

h h
h h

6.5

4 Focal Depth
(km)

Normal
= ± <

±Depth M
M

30 10, 6.0
50 10, 6.0

w
w

5 Fault
Dimension

Normal Blaser et al. (2010) for different fault orientation 0.3

6 Vs30 (m/s) – 2000 –
7 (s) Normal 0.01 –

Table 4
Regression coefficients for PGA and PSA at different period along with confidence interval calculated using Monte Carlo Simulation.

Period a1 a2 a3 a4 a5 a6
a a7

b

PGA 1.071 ± 0.25 -0.257 ± 0.051 -0.184 ± 0.043 -0.479 ± 0.051 0.078 ± 0.03 0.076 -0.0085 0.690 0.462 0.817
0.01 1.068 ± 0.24 -0.237 ± 0.051 -0.183 ± 0.043 -0.469 ± 0.051 0.079 ± 0.02 0.077 -0.0082 0.667 0.473 0.839
0.02 1.038 ± 0.24 -0.219 ± 0.051 -0.181 ± 0.044 -0.434 ± 0.051 0.087 ± 0.02 0.078 -0.0083 0.683 0.488 0.869
0.03 1.018 ± 0.25 -0.162 ± 0.055 -0.169 ± 0.051 -0.426 ± 0.052 0.092 ± 0.02 0.078 -0.0084 0.706 0.507 0.896
0.04 1.067 ± 0.25 -0.118 ± 0.051 -0.161 ± 0.052 -0.415 ± 0.051 0.095 ± 0.02 0.080 -0.0085 0.727 0.523 0.918
0.05 1.175 ± 0.24 -0.096 ± 0.051 -0.156 ± 0.052 -0.404 ± 0.052 0.097 ± 0.02 0.081 -0.0085 0.745 0.536 0.933
0.075 1.341 ± 0.25 -0.105 ± 0.056 -0.158 ± 0.053 -0.396 ± 0.051 0.095 ± 0.02 0.079 -0.0086 0.758 0.544 0.932
0.1 1.535 ± 0.26 -0.129 ± 0.050 -0.164 ± 0.053 -0.392 ± 0.053 0.093 ± 0.03 0.077 -0.0086 0.756 0.545 0.926
0.12 1.643 ± 0.26 -0.181 ± 0.052 -0.175 ± 0.054 -0.374 ± 0.053 0.090 ± 0.03 0.073 -0.0086 0.755 0.536 0.904
0.15 1.786 ± 0.26 -0.269 ± 0.052 -0.193 ± 0.053 -0.361 ± 0.054 0.086 ± 0.03 0.071 -0.0086 0.737 0.523 0.880
0.17 1.764 ± 0.26 -0.285 ± 0.052 -0.201 ± 0.053 -0.355 ± 0.051 0.081 ± 0.02 0.063 -0.0086 0.718 0.509 0.854
0.2 1.719 ± 0.26 -0.347 ± 0.053 -0.212 ± 0.053 -0.342 ± 0.051 0.075 ± 0.02 0.061 -0.0086 0.698 0.492 0.831
0.25 1.641 ± 0.25 -0.387 ± 0.050 -0.222 ± 0.052 -0.338 ± 0.05 0.071 ± 0.02 0.057 -0.0085 0.680 0.477 0.814
0.3 1.599 ± 0.26 -0.443 ± 0.055 -0.237 ± 0.051 -0.335 ± 0.051 0.068 ± 0.02 0.056 -0.0084 0.668 0.465 0.798
0.4 1.420 ± 0.26 -0.439 ± 0.055 -0.247 ± 0.054 -0.339 ± 0.054 0.070 ± 0.02 0.055 -0.0082 0.658 0.452 0.786
0.5 1.454 ± 0.26 -0.553 ± 0.055 -0.274 ± 0.055 -0.391 ± 0.054 0.077 ± 0.02 0.077 -0.0079 0.651 0.441 0.775
0.75 1.227 ± 0.28 -0.611 ± 0.050 -0.296 ± 0.055 -0.405 ± 0.054 0.091 ± 0.02 0.087 -0.0076 0.645 0.429 0.769
1 0.823 ± 0.28 -0.619 ± 0.050 -0.307 ± 0.055 -0.422 ± 0.054 0.109 ± 0.02 0.101 -0.0072 0.639 0.427 0.759
1.5 0.217 ± 0.28 -0.587 ± 0.055 -0.311 ± 0.061 -0.435 ± 0.055 0.125 ± 0.02 0.115 -0.0068 0.634 0.417 0.746
2 -0.433 ± 0.29 -0.543 ± 0.060 -0.305 ± 0.058 -0.462 ± 0.055 0.142 ± 0.02 0.131 -0.0065 0.629 0.401 0.744
3 -1.407 ± 0.29 -0.357 ± 0.058 -0.281 ± 0.062 -0.433 ± 0.058 0.156 ± 0.02 0.125 -0.0063 0.624 0.404 0.739
4 -2.325 ± 0.31 -0.103 ± 0.058 -0.243 ± 0.062 -0.463 ± 0.058 0.166 ± 0.02 0.131 -0.0060 0.620 0.402 0.737
5 -3.101 ± 0.31 0.056 ± 0.059 -0.222 ± 0.062 -0.482 ± 0.061 0.173 ± 0.02 0.148 -0.0059 0.618 0.402 0.737
7.5 -3.923 ± 0.33 0.251 ± 0.061 -0.191 ± 0.061 -0.498 ± 0.061 0.181 ± 0.02 0.156 -0.0059 0.616 0.404 0.735
10 -4.426 ± 0.33 0.085 ± 0.060 -0.203 ± 0.061 -0.515 ± 0.063 0.187 ± 0.02 0.197 -0.0060 0.614 0.405 0.817

a Confidence interval in a6 is± 0.02 for all periods.
b Confidence interval in a7 is± 0.001 for all periods.
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Fig. 4. Comparison of different version of stochastic ground motion prediction equation, amplitude versus distance at (a) PGA, (b) PSA at 0.2 s and (c) PSA at 1.0 s
and amplitude versus magnitude (d) PGA (e) PSA at 0.2 s and (f) PSA at 1.0 s. The dotted, dashed-dotted, dashed line and solid line respectively represent the variable
stress at 5, 10, 15MPa and the constant stress at 10MPa. The solid triangle represents corresponding recorded data.

Fig. 5. (a) Monte Carlo scheme used for determining the confidence interval and standard error in regression parameters. (b) Within-event and (c) Between-event
sigma obtained from considering eight models used in sensitivity analysis; same notions has been used in Fig. 5 (a) and (b).
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be captured. The ASs are established at 75 locations with azimuths
covering the range of 0° to 360° around the epicenter with azimuth bin
size of 4.8°. Hence, every next AS is at 10 km with an azimuth difference
of 4.8° from the successive stations. For example, the first station is at
10 km with azimuth at 4.8°, the next station will be at 20 km with
azimuth at 9.6° and last station will be at 750 km with azimuth at 360°.
The pictorial representation of AS is shown in Fig. 1 (top). This AS is
further used for simulating the ground motion for the different earth-
quake conditions, for the development of a new GMPE. Further all the
simulated parameters are used for developing a new GMPE for the
Himalayan region.

5. Regression analysis

The GMPEs relate the specific strong motion parameter of ground
shaking to seismological parameter of earthquake as source, site, wave
propagation path between the site and source, and geological features
beneath the site. Wide varieties of models are available with different
functional forms corresponding to the distance and magnitude scaling
for deriving any new GMPE. However, a functional form of GMPE can
be selected to any region before deriving a new robust GMPE con-
sidering available recorded data accounting the scaling corresponding
to the distance and magnitude. Bajaj and Anbazhagan [36] tested the
compatibility of various functional forms for distance and magnitude
scaling using the mixed-effect regression of residual calculated from the
functional form given in NGA-West 2 project. Based on that, within the

event and between events, uncertainties have been evaluated con-
cerning distance and magnitude. The whole algorithm and different
functional form used is explained in Bajaj and Anbazhagan [36] and
best representing GMPE functional form for Himalayan region based on
available data is given below:

= + + + + +
+

lnY a a M a M a R a R M a R( 6) (9 ) ln ln ( 6)m1 2 3
2

4 7

(12)

Where lnY M, , R and are respectively logarithm of ground motion,
magnitude, hypocentral distance and standard deviation and a1, a2, a3,
a4, am and a7 are the corresponding regression coefficients. The coef-
ficient am is equal to a5 when <M 6.0w and <R 300, else is equal to a6.
For determining the regression coefficients for a new GMPE, standard
nonlinear least square (LS) and random effect maximum likelihood
method (ML) is used for combined recorded and simulated database.
The main advantage of ML technique is that, it considers systematic
differences between events through partitioning the residuals [4,37].
For the approximately even distribution of the simulated data for
magnitude and distance, both ML and LS generate the same results [4].
However, ML is used as it results in both between-event and within-
event uncertainty. The regression coefficients corresponding to a1, a1,
a3, a4, a5 a6, a7 and a8 for different periods are given in Table 4.

Fig. 4 compares the various versions of the derived GMPE for the
Himalayan region, i.e. the variable stress drop with hinge at 5MPa,
10MPa and 15MPa (see Fig. 2) and constant stress drop at 10MPa for a
standard rock condition for all magnitudes. Comparing all GMPEs for

Fig. 6. Comparison of (a) Sigma; (b) Within-event and (c) Between-event standard deviations for the new Himalayan region GMPE with the NGA-West 2 GMPEs and
other stochastic GMPEs. The abbreviation of the respective GMPE is given in the text.
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variable and constant stress drop, it could be seen that for the large
magnitude the variation is significant, as this is the similarity between
the constant and the variable stress drop. The differences are more
pronounced for shorter periods as compared to longer periods. The PGA
and PSA (0.2 s) values estimated from a new GMPE for different stress
model are also compared with the recorded data. It is seen that the
recorded data is consistent with both variable stress and constant stress
drop.

6. Numerical experimentation on new GMPE

The standard error and confidence intervals are evaluated using the
Monte Carlo simulation technique [38] to test the accuracy of the es-
timated parameters from regression. 1000 samples of the PSA were
simulated using equation (12) for the given estimated regression coef-
ficients for different sets of magnitude and hypocentral distance for this
purpose. This database was simulated by bootstrapping the residuals
[39]. The simulations were performed at different time periods for
which regression coefficients were evaluated. For each of the simulated
PSA dataset, a crossed and nested, mixed effect regression approach
was used to find the regression coefficient corresponding to the each of
the dependent variables in equation (2). As per Efron and Tibshirani
[39], the standard error of the estimated parameters is the standard
deviation of the estimated parameters of the simulated database. For
example, the standard error (sê) in regression coefficients for PSA at
0.1s for a1, a1, a3, a4, a5 a6, a7 and a8 is 0.21, 0.22, 0.05, 0.04, 0.02, 0.02,
0.01 and 0.00 respectively. The whole procedure is given in Fig. 5 (a),
in a form of schematic diagram.

There are various methods for evaluating the bootstrap confidence
interval; however, the simplest one is the standard bootstrap confidence
interval that works when the estimates are normally distributed. The
100(1 )% standard bootstrap confidence interval on the estimated
parameter is defined by Efron and Tibshirani [39] as

= ±Estimate z se. ˆ/2 , where, z /2 is the upper 100 /2 percentage point of
the standard normal distribution and sê is the bootstrap estimate of the
standard error.

The distribution of the regression coefficients is close to normal dis-
tribution; hence the above method is used for estimating the coincidence
intervals. For example, the 90% confidence interval for PSA at 0.1s for a1,
a2, a3, a4, a5 a6, a7 and a8 respectively is 1.757 ± 0.25, 1.535 ± 0.26,
−0.129 ± 0.050, −0.164 ± 0.053, −0.392 ± 0.053, 0.125 ± 0.03,
0.077 ± 0.02 and −0.0086 ± 0.001. The confidence interval for the
respective period corresponding to each regression coefficient is given in
Table 4.

7. Sensitivity analysis

In this study, the developed GMPE is based on the simulated ground
motions which are highly influenced by the uncertainties in some of the
input parameters. Hence, sensitivity analysis has been performed to test
how these uncertainties influence the final GMPE uncertainty and how
robustly the present GMPE models result in the presence of uncertainty.
Set of seven GMPEs were computed; considering the uncertainty on
each parameter, one by one (all others were set to their median values).
The considered uncertainties are; focal depth uncertainty, uncertainty
on duration, fault plane (random orientation and hypocentral position),

Fig. 7. Comparison of predicted and recorded response spectra (a) North-East EQ (1986); (b) Myanmar EQ (2009); (c) Uttarkashi EQ (1991) and (d) India-Burma EQ
(1988) at different hypocentral distance. The solid and square dotted line respectively represents the predicted and recorded response spectra.
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anelastic attenuation, geometric spreading, kappa factor and stress
drop. Based on the analysis, it is seen that the coefficients determined
by varying these parameters are almost identical and within the con-
fidence interval as mentioned in Table 4. However, the standard de-
viation varies a lot with the change in each parameter (See Fig. 5 (b)
and (c)). Major contribution to the total uncertainty in case of within-
event terms is from (Fig. 5 (b)) and from stress drop in case of event-
to-event variability (See Fig. 5 (c)). In addition to , anelastic at-
tenuation has also peaked above 0.1 s but its influence is similar to

geometric attenuation at longer periods. Comparatively, focal depth,
duration, fault plane uncertainty and random variation of hypocentral
location on the fault have very little impact on the total GMPE un-
certainty.

The standard deviation determined in this study is compared with
the standard deviation of various GMPEs that are empirical GMPE for
NGA-West 2 project and stochastic for the United Kingdoms, Alps,
Switzerland and the Himalayan region and given in Fig. 6. Most of the
stochastic models show large deviation at low period and decreases

Fig. 8. (a) Magnitude versus Distance plot and distribution of residual (b) PGA versus Magnitude; (c) PGA versus Hypocentral Distance; (d) PSA (1.0 s) versus
Hypocentral Distance.

Table 5
Summary of GMPEs developed for the Himalayan regions.

SL. No. Reference Database (Mw) Distance Range (Km)

1. Singh et al. [6] Recorded ground motions from 5 earthquakes 5.7-7.2 ≤100
2. Sharma [7] 66 recorded data from 6 earthquakes 5.5-6.8 ≤150
3. Nath et al. [46] 80 recorded events and 25 simulated events 3.0-8.5 ≤100
4. Das et al. [10] 261 recorded data from 6 earthquakes 5.5-7.2 ≤300
5. Sharma and Bungum [9] Combined dataset consisting of 14 recorded earthquakes from India and 9 recorded earthquakes from

Europe
4.6-7.6 ≤200

6. Baruah et al. [11] 82 recorded earthquakes at 8 broadband stations 2.5-5.0 ≤145
7. Nath et al. [8] Simulated ground motions 4.8-8.1 ≤100
8. Sharma et al. [12] Combined dataset consisting of 6 recorded earthquakes from India and 10 recorded earthquakes from

Zegros region
5.2-6.9 ≤100

9. Gupta [48] 56 recorded data from 3 events 6.3-7.2 150-375
10. NDMA [15] 1600 Simulated ground motions 4-8.5 ≤500
11. Anbazhagan et al. [14] Simulated and recorded data of 14 earthquakes 5.3-8.7 ≤300
12 New GMPE Simulated 5775 sets for 10,000 earthquakes 4.0-9.0 ≤750
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with respect to periods. Boore et al. [40] and Campbell and Bozorgnia
[41] (referred as BO14 and CB14) respectively, show the standard de-
viation as a dual peak i.e. between 0.05 and 0.1 s and after 1 s. The peak
of the Edwards and Fӓh [3] and Drouet and Cotton [4] (referred as
EDF13 and DRCO15) and the present study is located between 0.05 s
and 0.1s. In case of NGA-West 2 GMPE, within-event sigma the peak lies
between 0.5 s and 1.5 s. For all the derived Himalayan GMPEs as NDMA
[15], Anbazhagan et al. [14] and Singh et al. [5] (referred as ANBU13
and SI16) the peak lies around or before 0.03s (See Fig. 6 (a)). In Fig. 6,
equation Abrahamson et al. [42], Rietbrock [43], Rodriguez-Marek
et al. [44] and Idriss [45] referred as AKS14, RB13, RM11 and ID14
respectively.

8. Validation and comparison of the new GMPE

The available strong motion recorded data in Himalayan region
does not cover the entire range of magnitude and distance. Hence, a
detailed validation of the newly derived ground motion prediction
equation for all ranges of magnitude and distance is not possible.
However, from Fig. 4, it is already seen that the recorded PGA and PSA
(0.2 s) is matching well with the PGA and PSA calculated from the
newly developed GMPE. Further, the response spectra of the North-East
Earthquake (1986); Myanmar Earthquake (2009); Uttarkashi Earth-
quake (1991) and India-Burma Earthquake (1988), which is recorded at
rock site is compared with the predicted response spectra from GMPE
and given in Fig. 7. It is seen from Fig. 7 that the predicted and derived
response spectra at different hypocentral distance and magnitude is
matching with± one standard deviation with respect to mean for the
entire period range. Minor differences at different periods may arise
due to different uncertainties considered while simulating the sto-
chastic strong ground motion.

Further, the error has been determined for PGA and PSA at 0.2 and
1 s with respect to magnitude and hypocentral distance. For a regres-
sion model to be unbiased, the mean of the residual is to be zero and
independent of the parameters in the regression model. Further for
checking the bias and average scatter, average and standard deviation
of the residual's errors are also calculated. Based on Fig. 8 (a), PGA
distribution of residuals with magnitude is unbiased. Similarly, the
calculated residuals are plotted with respect to hypocentral distance at
PSA for a period of 1.0s. From Fig. 8(b and c), it is also clear that the
residuals are unbiased with respect to the hypocentral distance. This
study on residuals indicates that the proposed GMPE model is unbiased

with respect to magnitude and hypocentral distance.
Further the new GMPE is compared with the existing Himalayan

region GMPE using the Log-Likelihood (LLH) method for different
periods. The detail of each of the existing GMPE with the new GMPE for
the Himalayan region is given as Table 5. The whole procedure re-
garding LLH is explained in Delavaud et al. [49]. The LLH values are
computed using the recorded strong motion database up to 2015. The
GMPE used for the comparison are Nath et al. [8], NDMA [15], An-
bazhagan et al. [14] and Singh et al. [5]. Fig. 9 shows the comparison of
the GMPEs, in which LLH is plotted against the different structural
period. LLH value less than 1 is obtained for all the structural periods. It
is also observed that low value of LLH was obtained for PGA, but in all
the existing GMPEs, it is increasing with the period.

9. Conclusion

Stochastic ground motion prediction equation for the whole
Himalayan region for a broad range of magnitudes (Mw4–9) and hy-
pocentral distances (10–750 km) was derived. The simulations were
done by deriving the region-specific seismological model parameters
and the uncertainty was propagated by random sampling of a corre-
sponding distribution of the input parameters. These seismological
model parameters were studied by dividing the whole Himalayan re-
gion into four parts i.e. Kashmir Himalayan, Kumaon-Garhwal
Himalayan, Bihar-Nepal Himalaya and Northeastern part of Himalayan
region. It was observed that these parameters are within the uncertainty
of each other for the entire Himalayan region. Hence only one GMPE
model was derived for the Himalayan region by adding uncertainty in
the seismological model parameters. The simulated data considering
these parameters was regressed using cross and nested regression ap-
proach for the defined functional form for scaling the magnitude and
large distance. Monte Carlo approach was used to determine the con-
fidence interval and standard error in regression coefficients. Further,
sensitivity analysis was used to find the impact of each input parameter
on the total uncertainty of the ground motion prediction equation. The
defined GMPE is valid for rock level ( =V m s2000 / ,s30 = s0.01 ). Site
effect based on different seismic site classification is not considered
while deriving a GMPE, as the data corresponding to different seismic
site class are not extensively defined. Hence, this could be a part of
future study. PGA and SA of newly developed GMPE are matching well
with the recorded data for the larger and smaller hypocentral distances.

Fig. 9. LLH value calculated considering the Himalayan GMPEs at different period for the recorded data up to 2015.
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