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ABSTRACT 

 

Fatality Analysis Reporting System (FARS) and Generalized Estimates System (GES) data are 

most commonly used datasets to examine motor vehicle occupant injury severity in the United 

States (US). The FARS dataset focuses exclusively on fatal crashes, but provides detailed 

information on the continuum of fatality (a spectrum ranging from a death occurring within thirty 

days of the crash up to instantaneous death). While such data is beneficial for understanding fatal 

crashes, it inherently excludes crashes without fatalities. Hence, the exogenous factors identified 

as critical in contributing (or reducing) to fatality in the FARS data might possibly offer different 

effects on non-fatal crash severity levels when a truly random sample of crashes is considered. The 

GES data fills this gap by compiling data on a sample of roadway crashes involving all possible 

severity consequences providing a more representative sample of traffic crashes in the US. FARS 

data provides a continuous timeline of the fatal occurrences from the time to crash – as opposed to 

considering all fatalities to be the same. This allows an analysis of the survival time of victims 

before their death. The GES, on the other hand, does not offer such detailed information except 

identifying who died in the crash. The challenge in obtaining representative estimates for the crash 

population is the lack of readily available “appropriate” data that contains information available in 

both GES and FARS datasets. One way to address this issue is to replace the fatal crashes in the 

GES data with fatal crashes from FARS data thus augmenting the GES data sample with a very 

refined categorization of fatal crashes. The sample thus formed, if statistically valid, will provide 

us with a reasonable representation of the crash population.  

 

This paper focuses on developing a framework for pooling of data from FARS and GES data. The 

validation of the pooled sample against the original GES sample (unpooled sample) is carried out 

through two methods: (1) univariate sample comparison and (2) econometric model parameter 

estimate comparison. The validation exercise indicates that parameter estimates obtained using the 

pooled data model closely resemble the parameter estimates obtained using the unpooled data. 

After we confirm that the differences in model estimates obtained using the pooled and unpooled 

data are within an acceptable margin, we also simultaneously examine the whole spectrum of 

injury severity on an eleven point ordinal severity scale – no injury, minor injury, severe injury, 

incapacitating injury, and 7 refined categories of fatalities ranging from fatality after 30 days to 

instant death – using a nationally representative pooled dataset. The model estimates are 

augmented by conducting elasticity analysis to illustrate the applicability of the proposed 

framework. 

 

Keywords: Fatality, Fatality Analysis Reporting System (FARS), Generalized Estimates System 

(GES), Data Pooling, Generalized ordered logit model 

  



1. INTRODUCTION 

 

Traffic crashes result in physical and emotional trauma as well as huge financial losses for the 

individuals involved, their families and the society at large. Across the world, these crashes 

account for 18 deaths and 1,136 disability-adjusted life years (DALY) lost per 100,000 individuals 

annually (WHO, 2013a; WHO, 2013b). Researchers and practitioners are constantly seeking 

remedial measures to reduce the burden of these unfortunate events. Towards this end, literature 

in transportation safety has evolved along two major streams: the first stream of research is focused 

on identifying attributes that result in traffic crashes and propose means to reduce the occurrence 

of traffic crashes (see Lord and Mannering (2010) for a review of these studies); the second stream 

of work examines crash events and identifies factors that impact the crash outcome and suggests 

countermeasures to reduce crash related consequences (injuries and fatalities) (see Savolainen et 

al. (2011) and Yasmin and Eluru (2013) for a review). The current research study contributes to 

the second stream of literature with a specific focus on driver injury severity analysis. 

A number of studies have explored the impact of various factors on vehicle occupant injury 

severity at disaggregate level (see Bédard et al., 2002; Fredette et al., 2008; and Yasmin and Eluru, 

2013 for a detailed review). These studies can broadly be categorized as: a) studies that focus 

exclusively on crashes involving only fatalities (employing a sample of crashes involving 

fatalities) and b) studies that examine crashes that involve all levels of injury severity – ranging 

from no injury to fatality (employing a random sample of traffic crashes that compile different 

levels of injury severity). In the United States (US), the former category of studies predominantly 

use the Fatality Analysis Reporting System (FARS) database (see Evans and Frick, 1988; Preusser 

et al., 1998; Zador et al., 2000; Gates et al., 2013) while the latter group of studies primarily employ 

the General Estimates System (GES) database (see Kockelman and Kweon, 2002; Eluru and Bhat, 

2007; Yasmin and Eluru, 2013).  

The FARS database is a census (not a sample) of all fatal crashes in the US; i.e., crashes 

that lead to at least one fatality within thirty consecutive days from the time of crash. The GES 

database, on the other hand, comprises a sample of road crashes across the US involving at least 

one motor vehicle travelling on a roadway and resulting in property damage, injury or death to the 

road users. The two datasets employed in the safety literature have their own advantages and 

limitations. The FARS focuses exclusively on fatal crashes. Therefore, one cannot reliably use this 

data to analyze the factors that increase or decrease the probability of fatality (because the data 

does not include crashes that do not lead to fatalities). The GES fills this gap by compiling data on 

a sample of roadway crashes involving all possible severity consequences (no injury, possible 

injury, non-incapacitating injury, incapacitating injury and fatality) providing a more 

representative sample of traffic crashes in the US. One of the advantages of FARS, however, is 

that the collected information includes the date and time of occurrence of the fatalities resulting 

within a 30-day time period from the crash. This detailed information provides us a continuous 

timeline of the fatal occurrences from the time to crash (instead of considering all fatalities to be 

the same). This allows for an analysis of the survival time of victims before their death. The GES, 

on the other hand, does not offer such detailed information except identifying who died in the 

crash.  

Examining the impact of various exogenous factors on all levels of injury severity as well 

as on the survival time of fatalities can potentially play a critical role in field triage - screening 

process to determine the more severe cases. Preclinical trauma care is one of the most important 

factors affecting the outcome of motor vehicle crash (MVC) victims (Chalya et al., 2012; Palanca 



et al., 2003). In prehospital setting, along with the anatomic and physiological conditions of MVC 

victims, different mechanism-of-injuries (vehicle intrusion, occupant ejection, vehicle telemetry 

and death in same passenger compartment) are also considered by emergency medical service 

(EMS) personnel as conditions for trauma triage of victims (Sasser et al., 2012; Isenberg et al., 

2011). In fact, it is evident from previous studies (Stewart, 1990) that prolonging survival beyond 

the first hour can potentially help avoid fatality with proper preclinical care. Hence, a refined 

specification of fatality might allow us to identify potential survivors that might benefit by 

providing pre- and post-hospital treatment. 

In an effort to identifying exogenous factors that help in prolonging survival time, using 

detailed information available in FARS data, Yasmin et al. (2015) examined fatal crashes from a 

new perspective. The authors recognize that fatality is an aggregation of a continuous spectrum 

ranging from dying instantly to dying within thirty days of crash (as reported in the FARS data). 

Keeping all else same, a fatal crash that results in an immediate fatality is clearly much more severe 

than another crash that leads to fatality after several days. Therefore, it is useful to explicitly 

recognize the different levels of severity among fatal crashes. Such refined definition of fatal 

crashes, as opposed to lumping all fatal crashes into a single category, allows one to differentiate 

fatal crashes based on the survival time and to derive insights on factors that can prolong survival 

time. A disadvantage of the study by Yasmin et al. (2015) is that, as discussed before, the FARS 

dataset focuses exclusively on fatal crashes. While using the FARS data is very helpful for 

understanding the differences across different fatal crashes, it inherently excludes crashes with 

other possible, non-fatal injury severity outcomes. This makes it difficult to generalize the findings 

to the overall crash population. Besides, while analyzing the survival time of only fatal crash 

victims (using FARS data) helps in deriving the influence of various exogenous factors on survival 

time conditional upon the occurrence of a fatality, it doesn’t allow the analyst to derive the 

influence of those factors in increasing the chances of survival. This is because the FARS data 

doesn’t provide a representative sample of non-fatal crashes.  

One way to address this issue is combining information from both the FARS and GES 

datasets into a single, disaggregate crash-level database1. This will bring together the strengths of 

both datasets – the representativeness of crashes with all injury severity outcomes from the GES 

data and the detailed information on fatal crashes from the FARS data. The challenge, however, 

lies in combining the two datasets in a statistically appropriate way. Since FARS is a census of all 

fatal traffic crashes in the US, all fatal crashes in the GES sample for a year should be available in 

the FARS data for that year. Now, if one could identify these crashes directly, it would be easy to 

augment the fatal crash records in GES with the detailed information from FARS. However, there 

is no mechanism to easily link crashes across these two databases because the datasets do not have 

a common identifier. Hence, an alternative, statistically valid method needs to be used for fusing 

information from both the datasets.   

The approach is a proof of concept investigation of data pooling from two datasets while 

ensuring statistical validity. While, there could be various other alternative datasets for such 

investigation, given the extensive use of GES and FARS datasets in safety literature, they serve as 

good candidates for the research exercise.  In this context, this paper is geared towards addressing 

the challenge of pooling data from GES and FARS databases. While several approaches exist in 

                                                 
1 To be sure, the reader would note that there have been compilation of GES and FARS datasets to obtain the Annual 

Traffic Safety Facts (see NHTSA, 2012). However, in these efforts, there is no attempt to pool disaggregate level data 

from the two sources. The report provides trends separately for FARS and GES datasets. Further, in our research, we 

examine the effect of exogenous variables on severity in pooled and unpooled data. 



the literature to fuse information from different data sources without a common identifier (Konduri 

et al., 2011; Sivakumar and Polak, 2013), a simple approach is to replace fatal crashes from the 

GES sample by a random sample from the FARS census of crashes. We conduct statistical tests to 

assess if this approach suffices for the purpose of developing a database that allows us to examine 

the whole spectrum of injury severity ranging from no injury to fatality, along with differentiating 

fatal crashes based on survival time. Moreover, the simultaneous interpretation of information 

would allow researchers to provide recommendations using a single modeling framework, rather 

than making inferences from the results of separate econometric models from different datasets.  

In summary, the current research makes a fourfold contribution to the literature on vehicle 

occupant injury severity analysis. First, we propose and test the efficacy of a simple yet statistically 

valid approach to fuse the FARS and GES datasets into a single, disaggregate crash level database 

that combines information from both the datasets. Second, we employ a sampling design approach 

for generating a nationally representative pooled sample of all crashes. Third, the Generalized 

Ordered Logit (GOL) model (also referred to as Partial Proportional Odds model) is employed on 

the pooled dataset to analyze the influence of a variety of exogenous factors on traffic crash injury 

severity, while considering a very refined characterization of fatal crashes along with other, non-

fatal injury severity outcomes. Finally, we compute elasticity measures to identify important 

factors affecting driver injury severity outcomes.  

The rest of the paper is organized as follows. The data source and sample formation are 

presented in Section 2. Section 3 provides details of the approach used for pooling data from FARS 

and GES. Section 4 presents the empirical analysis along with a statistical assessment of the 

proposed approach to fuse information from both data sources. The estimation results of the GOL 

model are described in Section 5. The elasticity effects are presented in section 6 and section 7 

concludes the paper. 

 

2. DATA SOURCE AND SAMPLE FORMATION 

 

The data for the current study is sourced from the FARS and GES databases for the year 2010. 

FARS data is a census of all fatal crashes in the US and compiles crashes if at least one person 

involved in the crash dies within thirty consecutive days from the time of crash. The FARS 

database has a record of 30,196 fatal crashes with 32,885 numbers of fatalities involving 74,863 

road users for the year 2010. The GES database is a nationally representative weighted stratified 

sample of road crashes collected and compiled from about 60 jurisdictions across the US. It 

includes information of reports compiled by police officers for crashes involving at least one motor 

vehicle travelling on a roadway and resulting in property damage, injury or death. The GES crash 

database has a record of 46,391 crashes involving 81,406 motor vehicles and 116,020 individuals 

for the year of 2010. These databases are obtained from the US Department of Transportation, 

National Highway Traffic Safety Administration’s National Center for Statistics and Analysis 

(ftp://ftp.nhtsa.dot.gov) and provide information on a multitude of factors (driver characteristics, 

vehicle characteristics, roadway design and operational attributes, environmental factors, crash 

characteristics and situational variables) representing the crash situation and events. The reader 

would note that the exogenous variable information available in FARS and GES datasets are very 

similar making it relatively easier to fuse the fatality information from FARS into the GES data. 

 This study is focused on injury severity outcome of passenger vehicles’ drivers who were 

involved in either a single or two vehicle crashes. The crashes that involve more than two vehicles 

are excluded from both FARS and GES datasets. Commercial vehicles involved collisions are also 

ftp://ftp.nhtsa.dot.gov/


excluded in order to avoid the potential systematic differences between commercial and non-

commercial driver groups. In order to prepare the final FARS dataset, crash records involving non-

motorized road users (19,670 records), commercial vehicles (17,795 records), records of 

passengers and crashes involving more than two vehicles (18,073 records), non-fatal crash records 

of drivers (8,012 records) and records with missing information for essential attributes (2,468 

records) are deleted. Thus, the final FARS dataset consisted of 8,845 records. From the continuous 

timeline of the fatal occurrences, a seven point discrete ordinal variable is created to represent the 

scale of fatal injury severity of drivers involved in these crashes - from least severe to most severe 

fatal crashes (and their proportions): 1) Died between 6 and 30 days of crash (6.0%), 2) Died 

between 2 and 5 days of crash (5.2%), 3) Died between 7 and 24 hours of crash (4.4%), 4) Died 

between 2 and 6 hours of crash (21.6%), 5) Died between 31 and 60 minutes of crash (14.5%), 6) 

Died between 1 and 30 minutes of crash (20.1%) and 7) Died instantly (28.3%) (see Yasmin et al. 

(2015) for a similar fatality continuum representation).  

In order to prepare the final GES dataset, crash records involving non-motorized road users 

and commercial vehicles (34,808 records), records of passengers and crashes involving more than 

two vehicles (32,824 records), and records with missing information for essential attributes 

(23,094 records) are deleted. Thus, the final GES dataset consisted of about 25,294 records. From 

this dataset, a sample of 6,062 records is randomly sampled out for the purpose of validating pooled 

models. The reader would note that the simple random sampling process was employed for the 

validation exercise to reduce the computational time necessary to validate and compare the models 

described subsequently. A five point ordinal scale is used in the database to represent the injury 

severity of individuals involved in these crashes. In the validation sample, the distributions of 

driver injury severities are as follows: No injury 63.7%, Possible injury 14.0%, Non-incapacitating 

injury 13.1%, Incapacitating injury 8.2% and Fatal injury 1.0%. However, GES is a probability 

sample of police reported traffic crashes. A weight variable is associated with each record of this 

stratified sample to represent the national crash trend. Therefore, we also select a sample of 19,181 

records from the final dataset with 25,294 records by using proportionate sampling method for the 

purpose of estimating models to produce national estimates. In the weighted estimation sample, 

the distribution of driver injury severity are as follows: No injury 83.7%, Possible injury 10.0%, 

Non-incapacitating injury 5.0%, Incapacitating injury 1.2% and Fatal injury 0.1%. 

 

3. RESEARCH FRAMEWORK 

 

In the current research effort, we employ the Generalized Ordered Logit (GOL) or the partial 

proportional odds logit model (see Eluru and Yasmin, 2015; Yasmin and Eluru, 2013; Eluru, 2013 

and Mooradian et al., 2013 for a detailed description of the econometric framework) to examine 

the driver injury severity by using pooled dataset from FARS and GES. The injury severity variable 

is analyzed using the ordered outcome framework to recognize the inherent ordinality of the injury 

severity levels. The traditional ordered outcome models (ordered logit and ordered probit) restrict 

the impact of exogenous variables on the outcome process to be same across all alternatives (Eluru 

et al., 2008). Recent research (Eluru, 2013; Eluru et al., 2008) has addressed this limitation by 

allowing the analyst to estimate individual level thresholds as function of exogenous variables as 

opposed to retaining the same thresholds across the population (as is the case in standard ordered 

logit). However, the prerequisites for any data pooling exercise are that different sources to be 

pooled are comparable (Verma et al., 2009) and share a common data generation process (Louviere 

et al., 1999). This section presents a roadmap to pool information from both the data sources and 



the tests used to assess if the pooled data represents a common data generation process for the 

individual data sources. A conceptual diagram of the research methodology employed in validating 

the pooled estimates is provided in Figure 1. Further, this section also presents a sampling design 

of the pooled dataset to produce representative estimates of driver injury severity levels. 

 

3.1 Testing Data Pooling Exercise 

 

The GES dataset has a five point ordinal scale to represent injury severity while a seven point 

ordinal scale is defined to distinguish the severity of different fatal crashes based on the survival 

time. In this study, we form the pooled dataset by replacing the fatal crash records in GES with a 

random sample of crashes in FARS. In the pooled dataset we can generate an eleven point ordinal 

representation of injury severity, with 4 categories for non-fatal crashes and 7 categories for fatal 

crashes (5 + 7 – 1). Prior to developing models to analyze the newly generated injury severity 

scale, it is imperative that we validate the pooled dataset. As the actual data generation process is 

latent we have to resort to comparing the pooled dataset with the unpooled dataset. In our pooling 

exercise, the records from FARS are being added to the GES data, the evaluation would be geared 

towards comparing the pooled data with the original GES data (unpooled data). Specifically, we 

undertake comparison of the pooled sample with the unpooled sample in two ways: (1) univariate 

sample comparison, by simply comparing the distributions of the variables in the two samples and 

(2) econometric model estimate comparison. The validation of pooling exercise is done by using 

the GES validation sample with 6,062 records2.  

While the descriptive comparison of pooled and original samples is relatively straight 

forward, the more challenging task is to perform a more statistically rigorous analysis to examine 

if the crash records from FARS can replace those in the GES data. For this purpose, as a first step, 

we estimate the injury severity model using the original GES validation data and compare the 

model estimates with the injury severity model estimated from the pooled dataset – while 

maintaining the same number of injury severity categories in the GES and pooled datasets. To do 

so, all the fatal records pooled from FARS into the GES sample were categorized as fatal (i.e., a 

single category) regardless of the survival time of the victims. The pooled data sample is obtained 

by removing the 59 fatal records in the GES sample of 6,062 records.  

To statistically ensure the validity of our comparison results and to ensure that the statistical 

results obtained from the pooled samples are stable, we consider multiple samples of fatal crash 

data from FARS to replace fatalities in GES. Specifically, for testing the validity of the pooled 

data, 15 data samples – 5 samples of about 2,000 records; 5 samples of about 3,000 records and 5 

samples of about 5,000 records – are randomly generated from the 8,845 records of FARS database 

and combined with the GES data to form pooled data. These 15 data samples along with the full 

sample (of 8,845 records) from FARS dataset are used to generate 16 different sets of pooled 

databases. The fatal records replaced in GES by the FARS fatal records in these 16 samples are 

presented in Table 1. GOL models of injury severity are estimated for these 16 pooled samples 

under the five point ordinal scale system and compared with the GOL model parameters obtained 

                                                 
2 At this juncture, it is important to highlight that the validation exercise does not consider the weights available in the 

GES dataset. However, as the records are being added to GES from FARS to create the pooled sample and validated 

against the unpooled sample, not considering weights does not affect the findings of the validation exercise. The 

econometric models are estimated for the pooled and unpooled models with the same weight distribution. Hence, the 

comparison is valid. However, the model estimates from these pooled models are not nationally representative and 

hence econometric models for weighted datasets are also estimated. 



using unpooled GES data to ensure that the estimates have not been altered significantly due to the 

newly added records. 

 

3.2 Weight Variable for Pooling 

 

The reader would note, from Table 1, that the GES (unpooled) database of validation sample has 

a very small percentage of fatalities. This is because the percentage of fatal crashes is small 

compared to all other crashes. As our primary objective is examining the impact of exogenous 

variables on seven categories of the fatality spectrum (based on survival time) it is useful to 

oversample the fatal crashes from FARS. Otherwise, we are likely to have very small number of 

records for each of the fatal injury severity alternatives. Of course, the oversampling of fatalities 

from FARS to replace GES fatalities necessitates creating an appropriate weight variable to weight 

the pooled data. This approach ensures that the distribution of the injury severity variable in the 

pooled data is the same as that in the GES data. Therefore, to generate the pooled sample, we 

remove the fatal crashes (𝑚𝑖) from the GES sample and replace it with fatal cases (𝑛𝑖) from the 

FARS along with a specific weight 𝜔𝐹𝐺 computed as  
𝑚𝑖

𝑛𝑖
. Specifically, a weight of 𝜔𝐹𝐺 is assigned 

to the FARS crash records (that replace the GES fatalities) in the pooled samples while the other 

non-fatal crash records (from GES validation sample) were weighted by 1. The associated weights 

for 16 different pooled samples are shown in Table 1. 

 

3.3 Severity Parameter Comparison Exercise 

 

The 16 pooled data samples created with appropriate weights are employed to generate injury 

severity parameter estimates. The parameter estimates obtained using the pooled data are 

compared with that of the original GES parameter estimates obtained using unpooled data (i.e., 

the original GES validation data) by computing the percentage error (considering parameter 

estimates from unpooled data as the base case). Then, a hypothesis test that the parameters are 

obtained from the same distribution (𝑖. 𝑒. , 𝛽𝑃 = 𝛽𝑈𝑃
3 where P=Pooled and UP=Unpooled) is 

carried out to examine the differences between parameter estimates. If this hypothesis is rejected, 

the estimates from pooled model represent estimates from a dissimilar latent data generation 

process (Bass and Wittink, 1975). On the contrary, if the hypothesis is not rejected, it will provide 

support that the proposed pooling of GES and FARS datasets has not altered the distribution of the 

parameters and that the pooling process is statistically valid. The percentage error in parameter 

estimates and the hypothesis tests are first computed separately for each of the 16 pooled data 

samples. Subsequently, for ease of presentation, we present and discuss the average measures from 

each sample type – 1 pooled sample with 8,845 records from FARS (sample 16th of Table 1); 5 

pooled samples with about 5,000 records from FARS (samples 11-15th of Table 1); 5 pooled 

samples with about 3,000 records from FARS (samples 6-10th of Table 1); and 5 pooled samples 

with about 2,000 records from FARS (samples 1-5th of Table 1).  

 

                                                 
3 To test the hypothesis that 𝛽𝑃 = 𝛽𝑈𝑃, we need to obtain the distribution of (𝛽𝑃 − 𝛽𝑈𝑃). The standard error for the 

distribution is obtained as  √𝑆𝐸𝑃
2 + 𝑆𝐸𝑈𝑃

2  where SEP and SEUP represent standard errors of the parameters obtained 

using pooled and unpooled data respectively. Then, one can simply do a t-test on (𝛽𝑃 − 𝛽𝑈𝑃). That is, if the ratio of 

the estimate of (𝛽𝑃 − 𝛽𝑈𝑃) to its standard error is less than the critical t-value at a chosen confidence level, then one 

cannot reject the hypothesis that  𝛽𝑃 = 𝛽𝑈𝑃. 



3.4 Performance Evaluation of Eleven Point Pooled Model 

 

After we confirm that the differences in model estimates from the five point ordinal models are 

within an acceptable margin, we can employ the pooled data to estimate an injury severity model 

with an eleven point severity scale with 4 categories of injury severity for non-fatal crashes and 7 

categories for fatal crashes. However, another issue that needs to be addressed before estimating 

the eleven point scale ordinal model is developing a statistical approach to determine if the eleven 

point ordinal model is an improvement on the five point ordinal model (with all fatal crashes 

lumped into a single category). Due to the nature of the log-likelihood measure employed in model 

estimation, increasing the resolution will lead to deterioration of model log-likelihood. Hence, 

comparing log-likelihoods between a five alternative model and eleven alternative model is not 

statistically valid. Interestingly, we could not find any method in literature to make a meaningful 

comparison of models with different resolutions of dependent variable definitions. Hence, we 

developed an approach based on first principles to address this issue and compare the performance 

of eleven point ordinal model with that of five point ordinal model.  

 

3.5 Sampling design for Population Representative Estimates 

 

The pooled estimates using an unweighted GES sample is not representative of the population. 

Thus, it is important to incorporate the associated “weight” variable of GES data sample in the 

pooled dataset in order to produce nationally representative estimates. Using the weight of GES in 

the non-fatal categories of pooled data is straightforward as these records are directly drawn from 

the GES database. However, it is a challenge to incorporate the weight for the fatal crashes in the 

pooled sample after replacement from FARS. To address this issue, we employ a two-step 

approach in designing a nationally representative pooled sample of all crashes. First, we generate 

a nationally representative GES sample, which is yet unpooled, by employing proportional 

sampling strategy4 (see Paleti et al. (2010) for a similar approach). This approach through choice 

based sampling obtains a sample of GES records that closely match the weighted shares of the 

GES sample. The approach ensures that the estimates obtained from the weighted sample are not 

different from the estimates obtained from the choice based sample. The approach allows us to 

avoid the consideration of weight in the model estimation process and thus makes replacement 

relatively straight forward.  

Once we ensure appropriate representation of the national crash profile, in the second step, 

we replace the fatal crashes of the proportionate GES sample (26 records) with a random sample 

of fatal crashes from FARS along with weight variable for pooling as described in Section 3.2. 

The proposed method allows us to circumvent the need to operate with two weight variables and 

offers a statistically easier alternative to generating a nationally representative dataset. The pooled 

data sample generated by using the above steps is then used for the purpose of estimating the final 

driver injury severity model. For our analysis we chose one sample from the 16 different pooled 

data samples. The chosen sample has 2,967 randomly sampled records from the FARS data to 

replace the 26 fatal records from GES and the remaining 19,155 records from the GES data. 

 

 

 

 

                                                 
4 The reader is referred to Schutt et al. (2011) for a detailed discussion on proportional stratified sampling approach. 



4. EMPIRICAL ANALYSIS 

 

4.1. Variables Considered 

 

In our analysis, to estimate models using pooled data, we prepared the datasets such that both GES 

and FARS datasets have exactly the same set of independent variables. We selected a host of 

variables from six broad categories: Driver characteristics (including driver gender, driver age, 

restraint system use, alcohol consumption and physical impairment), Vehicle characteristics 

(including vehicle type and vehicle age), Roadway design and operational attributes (including 

speed limit, types of intersection and traffic control device), Environmental factors (including time 

of day, lighting condition, day of week and road surface condition), Crash characteristics 

(including collision object, manner of collision, collision location and trajectory of vehicle’s 

motion), and Situational variables (including number of passengers and driver ejection). It should 

be noted here that several variables such as presence of shoulder, shoulder width, point of impact, 

roadway class and number of lanes could not be considered in our analysis because either the 

information was entirely unavailable or there was a large fraction of missing data for these 

attributes in the dataset. To be sure, we employ the manner of collision and speed limit variables 

as surrogates for point of impact and roadway class, respectively. In the final specification of the 

model, statistically insignificant variables were removed. The reader would note that the pooling 

exercise was undertaken using the variables that are common to both datasets. Hence, variables 

such as emergency crew arrival times were not considered in our models as they are unavailable 

in GES data. 

 

4.2. Validation Exercise of Pooled Data  

 

The first step in the validation exercise was to examine the similarities and dissimilarities in 

independent variables across the pooled and unpooled samples (to be sure, the validation exercise 

is done by using the validation GES sample). In the comparison, we found that the exogenous 

factor distributions of all pooled datasets (16 datasets) are almost the same. For the sake of brevity 

we chose to present the results for one sample only. The sample characteristics of the exogenous 

factors of unpooled and one pooled (weighted) dataset are presented in Table 2. Overall, we find 

that the characteristics of the pooled and unpooled samples across the entire sample (in columns 2 

and 3) and across fatal crashes (columns 4 and 5) are very similar. We observe that there are 

slightly higher proportions of driving under the influence of alcohol and negotiating curves among 

the fatal crashes in the pooled data than those in the unpooled data. Also, the proportions for fatal 

crashes in the pooled dataset are marginally lower for two way traffic-with median and for vehicle 

age 6-10 years. It is not unanticipated that pooling would introduce such minor differences between 

the datasets.  

In the second step of our validation, a comparison exercise between the parameter estimates 

obtained using unpooled and pooled data is also carried out by using 16 different pooled samples. 

The reader would note that a direct comparison of parameter estimates is considered only for 

illustrative purposes. A more rigorous statistical approach is also undertaken. The percentage 

errors in injury severity parameter estimates obtained using pooled datasets compared to parameter 

estimates obtained using unpooled data are presented in Figure 2 for all the variables (variable 

numbers are defined in Appendix A along with the injury severity estimates obtained using the 

unpooled model). From this plot, we can see that, among 44 variables in the final models, 32 



variables have an error percentage lower than 10%, 8 variables have an error percentage between 

10 and 25% and 4 variables have an error percentage higher that 25%. Overall, for such highly 

non-linear models such as GOL, estimated using two datasets, these are reasonably small 

differences.  

To undertake a more rigorous statistical comparison, we test the hypothesis that the 

parameter estimates obtained using the pooled and unpooled datasets are not systematically 

different and the observed numerical differences can be accounted by the randomness in data 

samples. The test values of the homogeneity hypothesis test (𝛽𝑃 = 𝛽𝑈𝑃) between parameter 

estimates obtained using unpooled and pooled datasets are plotted against the variable numbers 

and is presented in Figure 3. From this plot, we can clearly see that the test statistics lie within the 

bounds +1.96 and -1.96 (critical t-stats at 95% confidence level). In fact, the largest difference is 

less than 1 indicating that there is no systematic difference in the estimates from pooled and 

unpooled models. This same trend can be observed for all types of pooled data samples with 

different numbers of FARS records in the pooled data. Thus, we can find no evidence to reject the 

hypothesis that the severity parameter estimates obtained using pooled data and the severity 

parameter estimates obtained using unpooled data follow different distribution. Based on our 

comparison of descriptive statistics and severity parameter estimates, we can argue that there is no 

evidence to suggest that the data pooled from GES and FARS results from a distinct latent data 

generation process than that in GES. 

 

4.3. Metric for Comparing Eleven Point Model with Five Point Model 

 

The second step in the validation exercise was to develop a statistical approach to determine if the 

eleven point ordinal model is an improvement on the five point ordinal model. In a five point 

ordinal scale model all fatalities are treated equally i.e. there is no distinction across fatal crashes. 

So in a five alternative model, we implicitly assume that the seven fatality groups considered in 

the eleven alternative model are all equally likely. Recognizing this assumption, one could 

generate an equivalent eleven alternative log-likelihood based on the five alternative model log-

likelihood value. This can be compared with the log-likelihood of the eleven alternative model that 

differentiates between the various fatality classes.  

The exact equation for the computation of log-likelihood takes the following form: 

𝐿 =  ∑ [(∑(𝑙𝑜𝑔𝑃𝑖(𝑗))
𝑑𝑖𝑗
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where, 𝜔𝐹𝐺 is the weight, 𝑖 be the index for drivers (𝑖 = 1,2, … , 𝑁), 𝑗 be the index for driver injury 

severity levels (𝑗 = 1,2, … … … , 𝐽), 𝑃𝑖(𝑗) represents the probability of injury severity level j,  and 

𝑑𝑖𝑗 is a dummy variable taking the value 1 if the driver 𝑖 sustains an injury of level 𝑗 and 0 

otherwise. Once the equivalent log-likelihood is generated based on the above equation, one could 

easily employ the likelihood ratio (LR) test to check if the eleven point ordinal scale model offers 

additional improvement. The LR test statistic is defined as 2 * (LL11 – LL5) where LL11 and LL5 

represent log-likelihood values at convergence of the eleven point and equivalent five point ordinal 

models, respectively. The LR test statistic thus computed is compared with the chi-square 

distribution value of k degrees of freedom where k corresponds to the additional parameters in the 

unrestricted model. In our case, for all samples, the additional number of parameters is 6. Hence, 



if the LR test statistic is larger than the 𝜓2 value for 6 degrees of freedom, we can conclude that 

the considering fatality as multiple states enhances the data fit.  

The log-likelihood values along with the LR test statistic for the equivalent and the actual 

eleven point models for various samples are presented in Table 3. The resulting LR test values for 

the comparison of equivalent/actual eleven point models for all sample types are more than 23 

indicating the actual eleven point model outperforms the equivalent eleven point model at any 

reasonable level of statistical significance. The consistent improvement offered by the pooled 

model clearly indicates that the refined categorization of fatal injury crashes improves the model 

fit and provides more information to the model for examining the injury severity outcome. This is 

of particular relevance to this empirical exercise because fatal crashes comprise a very small 

portion of our sample (only 1%) – thus by introducing further disaggregation of an alternative with 

such a small sample share, there was a risk of worsening the model.  

 

5. ESTIMATION RESULTS 

 

The driver injury severity model of the nationally representative pooled data sample for the eleven 

point ordinal injury severity categorization is discussed in this section. To reiterate, the dependent 

variable under consideration is the eleven point ordinal variable defined as: no injury, possible 

injury, non-incapacitating injury, incapacitating injury, and 7 categories within fatal crashes - died 

between 6 and 30 days of crash, died between 2 and 5 days of crash, died between 7 and 24 hours 

of crash, died between 2 and 6 hours of crash, died between 31 and 60 minutes of crash, died 

between 1 and 30 minutes of crash and died instantly. The estimation results are presented in Table 

4. In GOL model, when the threshold parameter is positive (negative), the result implies that the 

threshold is bound to increase (decrease); the actual effect on the probability is quite non-linear 

and can only be judged in conjunction with the influence of the variable on propensity and other 

thresholds. In the following sections, the estimation results are discussed by variable groups. 

 

Driver Characteristics: In the category of driver characteristics, the result for driver gender 

indicates higher injury risk propensity for female drivers compared to male drivers. The effect of 

this variable is also significant for the threshold demarcating possible and non-incapacitating 

injury. The positive sign of the coefficient in the threshold indicates higher likelihood of possible 

injury for the female drivers. The result perhaps is indicative of the lower physiological strength 

of female drivers (compared to male drivers) in withstanding the impact of a crash (Xie et al., 

2009; Chen and Chen, 2011). The age of drivers involved in the collision also has a significant 

influence on injury severity. As found in previous studies (Xie et al., 2012; O'Donnell and Connor, 

1996; Castro et al., 2013), the parameter characterizing the effect of young driver (age<25) 

suggests a reduction in the likelihood of severe injuries compared to middle-aged drivers (age 25 

to 64). However, the estimation result indicates that compared to the middle aged driver, the latent 

injury propensity is higher for older drivers (age≥65).   

As expected, injury risk propensity is higher for the drivers not wearing seat belts relative 

to the drivers using seat belts (see Obeng, 2008; Yau, 2004; Yasmin et al., 2012; Eluru and Bhat, 

2007 for a similar result). At the same time, the negative value of the threshold demarcating the 

possible and non-incapacitating injury of unrestrained driver reflects lower likelihood of possible 

injuries and, in general, higher likelihood of dying instantly for those drivers. The result related to 

drunk driving indicates that alcohol impairment leads to higher injury risk propensity of drivers 

compared to sober drivers. The negative effect of this variable on the threshold separating non-



incapacitating and incapacitating injury level indicates a lower likelihood of non-incapacitating 

injury for the alcohol impaired drivers. The net implications of these effects is that alcohol 

impaired drivers have a lower likelihood of no injury and a higher likelihood of dying instantly in 

a crash compared to sober drivers. A crash involving physically impaired drivers is associated with 

an overall higher injury risk propensity. The result may be reflecting increased reaction times for 

physically impaired drivers.  

 

Vehicle Characteristics: With respect to driver’s vehicle type, the estimation results show that 

latent injury risk propensities are lower for the drivers of sports utility vehicle (SUV), pickups and 

vans compared to the drivers of passenger car, presumably because SUV, pickups and vans have 

huge mass which offer more protection to the occupants of these vehicles (Kockelman and Kweon, 

2002; Xie et al., 2009; Eluru et al., 2010; Fredette et al., 2008).The effect of SUV is also significant 

in second threshold and indicates increased probability of possible injury. The vehicle age results 

demonstrate that latent injury propensities are higher for drivers in older vehicles (vehicle age 6-

10 years and vehicle age ≥ 11 years) relative to drivers in newer vehicles (vehicle age ≤ 5 years). 

As is expected, within the vehicle age categories considered the oldest vehicle age category has a 

larger impact relative to the moderately older vehicle age category. The higher injury risk of older 

vehicle’s driver may be attributable to the absence of advanced safety features and/or the 

involvement of suspended and unlicensed drivers in older vehicles (Lécuyer and Chouinard, 2006, 

Kim et al., 2013; Islam and Mannering, 2006).  

 

Roadway Design Attributes and Operational Attributes: Several roadway design attributes 

considered are found to be significant determinants of driver injury severity. Among those, the 

injury risk propensities are higher with overall increased likelihoods of dying instantly (as 

indicated by positive signs of thresholds demarcating possible and non-incapacitating injury) for 

crashes occurring on medium (26 to 50 mph) and high (above 50 mph) speed limit locations (with 

larger impact for high speed limit locations) compared to lower (less than 26 mph) speed limit 

locations (see Eluru et al., 2010; Chen et al., 2012; Tay and Rifaat, 2007 for similar results). The 

presence of traffic control device is also found to have significant effect on the severity of crashes. 

Crashes at traffic controlled and stop-sign controlled intersections seem to decrease the likelihood 

of serious crashes. However, the effect of stop-sign on threshold parameterization also indicates 

increased likelihood of incapacitation injury, possibly suggesting non-compliance with this traffic 

control device and judgment problems (Chipman, 2004; Retting et al., 2003). The influence of 

traffic control device also reveals that the presence of other traffic control devices (such as warning 

sign, regulatory sign, railway crossing sign) increases the likelihood of injury risk propensity of 

the drivers.  

 

Environmental Factors: Several environmental factors considered are found to be significant 

determinants of driver injury severity in the final model specification. With respect to time of day, 

the latent propensity for evening peak period (related to morning peak, off peak and late evening) 

is found to be negative, indicating lower likelihood of serious injury, and is may be a result of 

traffic congestion and slow driving speeds during this period. The likelihood of injury risk 

propensity is found to be higher for late night (12.00 a.m. to 5.59 a.m.) period. This finding is 

consistent with several previous studies; attributable to reduced visibility, fatigue, longer 

emergency response times, higher driver reaction time and/or increased traffic speed (Plainis et 

al., 2006; Helai et al., 2008; Hu and Donnell, 2010; Kockelman and Kweon, 2002; de Lapparent, 



2008). The findings of the lighting condition indicate that if collisions occur during dusk, the 

consequence is likely to be more injurious as compared to the crashes during other lighting 

condition (daylight, dawn and darkness). The sunglare during dusk period might pose such risk on 

drivers (Jurado-Piña et al., 2010; Gray and Regan,2007). As found in previous studies (Kockelman 

and Kweon, 2002; Quddus et al., 2002), our study also found that the likelihood of driver injury 

risk propensity is higher during weekend compared to weekdays. The surface condition effects are 

simplified to a simple binary representation of presence/absence of snowy road surafce condition. 

The result for the variables indicates that if collisions occur on a snowy road surface (relative to 

those on other surface conditions), the drivers are more likely to evade injury, perhaps due to 

reduced speeding possibility and/or could be related to more cautious driving (Edwards, 1998; 

Mao et al., 1997; Eluru and Bhat, 2007). 

 

Crash Characteristics: Collision with large object (building, concrete traffic barrier, wall, tree, 

bridge, snow bunk) result does not have any effect on the propensity of injury severity, but 

demonstrates a higher likelihood of non-incapacitating injury and in general, a higher probability 

of instant death in a crash (related to collision with small object and moving vehicle). The result 

is in line with several previous studies (Yamamoto et. al., 2004; Holdridge et al., 2005). The result 

also suggests that collision with other object (animal, non-fixed object) has a lower injury risk 

propensity. The results related to collision type reflect the anticipated higher injury risk propensity 

for head-on collision compared to other collision types. This is perhaps a consequence of greater 

dissipation of kinetic energy. The results in Table 4 related to sideswipe (both same and opposing 

direction) collisions underscore lower injury risk propensities relative to other collision types. The 

negative sign of propensity associated with front to rear collision reflects lower injury risk 

propensity. On the other hand, the impacts of front to rear collision on both of the first two 

thresholds are positive, which implies that the effects of front to rear collision on different injury 

categories are crash and driver-specific. However, the results suggest an increased probability of 

no injury category and, in general, a decreased possibility of instant death category. Crashes in 

driveway access location lead to an overall reduced injury risk propensity (relative to collision at 

other location) perhaps indicating driving at lower speed or more watchful driving at these 

locations (Rifaat and Tay, 2009). 

The effects of the trajectory of vehicle's motions underscore an overall higher injury risk 

propensity for the driver whose vehicle was stopped in a traffic lane compared to the one who was 

going straight at the time of collision. Both turning manoeuvres (left and right) of drivers have 

lower injury risk propensities compared to going straight. This may be reflecting more watchful 

driving as well as lower speeds while turning. Changing traffic lane has a lower impact on the risk 

propensity, while the indicator variable has a negative impact on the threshold between non-

incapacitating and incapacitating injury. This effect implies a lower probability of non-

incapacitating injury and an overall higher probability for instant death (relative to going straight). 

 

Situational Variables: Among different situational variables, number of passenger and driver 

ejection are found to affect driver injury severity. A higher injury risk propensity is observed for 

the presence of one passenger in the vehicle relative to presence of more than one or no passenger. 

Finally, the coefficient corresponding to driver ejection reveals that drivers who are ejected out of 

their vehicle during a crash have a high probability of sustaining serious injuries compared to those 

who were not ejected out. The result concurs with several previous studies (Palanca et al., 2003; 

Eluru and Bhat, 2007). 



      

6. ELASTICITY EFFECTS AND IMPLICATIONS 

 

The pooling exercise as presented in the paper shows that the pooled model (eleven point) provides 

a superior fit over unpooled (five point) model in examining driver injury severity outcomes. 

Therefore, we can expect that the pooled model provides more information on injury severity 

process relative to the unpooled model. However, both the pooled and unpooled models are 

estimated by using the same set of exogenous variables. Hence, for further policy analysis, it is 

beneficial to identify the differences between the pooled and unpooled models along with the 

additional information that the pooled model has to offer over unpooled model.   

The parameter effects of the exogenous variables in Table 4 do not provide the magnitude 

of the variable effects on the injury severity of drivers. To quantify the effects of these variables 

and to identify the differences between pooled and unpooled models on driver injury severity 

outcomes, we compute the aggregate level “elasticity effects” (see Eluru and Bhat (2007) for a 

discussion on the methodology for computing elasticities) for a selected set of independent 

variables – driver age≥65, other physical impairment, vehicle age 6-10 years, medium speed limit 

road, late night, weekend, head-on collision, changing lane and presence of one passenger. The 

elasticity estimates are calculated for both the pooled and unpooled models of the nationally 

representative pooled and unpooled samples, respectively.  

In order to identify the differences between the pooled and unpooled models, we compute 

the differences in elasticity effects of variables for the non-fatal crash categories as: [Elasticity 

(Pooled) - Elasticity (Unpooled)]. These differences are presented in Figure 4. The following 

observations can be made based on the plot presented in Figure 4. First, there are considerable 

differences in elasticity effects between the pooled and unpooled models. The differences increase 

with increasing non-fatal crash severity levels i.e. the severe is the crash, the larger is the under-

estimation of elasticity for the five alternative model. To illustrate the difference in estimates for 

fatal categories, we plot the elasticity effects from the unpooled (one category) and the pooled 

model (seven categories). This plot is presented in Figure 5. The following observations can be 

made based on the elasticity effects presented in Figure 5. First, the results in Figure 5 indicate 

that there are considerable differences in the elasticity effects of unpooled and pooled fatal crash 

categories. Second, there are also substantial differences across different fatal crash categories of 

pooled model. Specifically, the differences for collision on medium speed limit road, other 

physical impairment and head-on collision are significant. These findings support our hypothesis 

that the severity of fatal crashes is not a single, un-separable category but rather is a continuum 

ranging from dying instantly to dying within thirty days of crash. These results also suggest that 

considering a fine resolution categorization of fatal crashes in examining the crash injury severity 

outcome offers the potential to provide additional information on injury severity mechanism. This 

information has important implication for policy makers in developing the EMS system and trauma 

triage. Third, the most important variables in terms of early death are collision on a medium speed 

limit road, head-on collision and driving under other physical impairment. These variable effects 

have important implications in terms of enforcement, engineering and educational strategies. In 

terms of engineering measures, a forgiving road environment should be designed for a higher speed 

limit road location to allow the drivers more space to recover from a driving error. Head-on 

collisions are often caused by drivers violating traffic rules, driving across the centerline, driving 

too fast for the roadway conditions and thus by losing control of their vehicles (Zhang and Ivan, 

2005). Therefore, policies concerning the enforcement in reducing the traffic violation have the 



potential to reduce this type of collision. With respect to enforcement and education, our results 

endorse a continuous education program and stricter enforcement to prevent impaired-driving. 

Public health effort and education campaigns against intoxicated driving are needed for this group 

of drivers. 

Finally, the elasticity analysis conducted provides an illustration of how the proposed 

pooled model can be applied to determine the critical factors contributing to reducing the survival 

time. For example, based on crash characteristic elasticities computed, if EMS services can 

identify critical crashes with likelihood for survival on the field it might assist in determining the 

appropriate mode of patient transfer (by road or air lifting depending on the crash characteristics) 

and also providing appropriate medical supervision at the hospital.  

 

7. CONCLUSIONS 

 

The focus of this paper was to develop a framework for pooling of data from Fatality Analysis 

Reporting System (FARS) and Generalized Estimates System (GES) data. The current research 

makes four important contributions to literature on driver injury severity analysis. First, we 

developed and tested a simple approach to combine information from FARS and GES databases 

toward a pooled database that brings together the strengths of individual databases. Second, we 

employed a sampling design approach for generating a nationally representative pooled sample of 

all crashes. Third, after demonstrating the validity of the approach, the nationally represented 

pooled data set was employed to undertake injury severity analysis with a very refined 

characterization of fatality along with other injury severity levels. Specifically, a Generalized 

Ordered Logit model (also referred to as Partial Proportional Odds model) was estimated on an 

eleven-alternative ordinal categorization of injury severity – no injury, minor injury, severe injury, 

incapacitating injury, and 7 categories of fatal injury ranging from fatality after 30 days of crash 

to instant death. Finally, using the empirical model results, we identified important factors 

affecting driver severity levels by evaluating elasticities of a selected set of exogenous variables.  

The empirical analysis involved the validation of the five point ordinal (no injury, possible 

injury, non-incapacitating injury, incapacitating injury and fatal injury) pooled sample against the 

validation GES sample (unpooled sample) through two methods: (1) univariate sample comparison 

and (2) econometric model estimate comparison. The validation exercise confirmed that there was 

no evidence to suggest that the data pooled from GES and FARS resulted from distinct latent data 

generation process than the GES sample - the severity parameter estimates obtained using the 

pooled data closely resembled the severity parameter estimates obtained using the unpooled GES 

data. After we confirmed that the differences in parameter estimates obtained using pooled and 

unpooled data from the five point ordinal models were within the acceptable margins, we 

employed the pooled data to estimate models of fine resolution of injury severity with an eleven 

point ordinal scale defined as: no injury, possible injury, non-incapacitating injury, incapacitating 

injury, died between 6 and 30 days of crash, died between 2 and 5 days of crash, died between 7th-

24 hours of crash, died between 2 and 6 hours of crash, died between 31 and 60 minutes of crash, 

died between 1 and 30 minutes of crash and died instantly. To compare the model with the five-

alternative model estimated using the unpooled data, we generated an equivalent eleven alternative 

log-likelihood based on the five alternative model. The consistent improvement offered by the 

model estimated using the pooled data clearly indicated that inclusion of multiple discrete states 

of fatal injury category improves the model fit and provides more information in examining the 

injury severity outcome. Finally, a nationally representative pooled data sample was generated by 



using the two- step sampling design approach which was then used for the purpose of estimating 

a nationally representative eleven point driver injury severity model.  

In our research, to further understand the impact of various exogenous factors and to 

identify the differences between pooled and unpooled models, elasticity effects were estimated for 

a selected set of exogenous variables. The elasticity effects indicated that there were considerable 

differences in the elasticity effects across different crash categories of pooled and unpooled 

estimates. The substantial differences in elasticity effects across different fatal crash categories of 

pooled dataset signify the importance of considering the fine resolution of fatal crashes in 

examining the crash injury severity outcome. The most important variables in terms of early death 

were collision on the medium speed limit road, head-on collision and driving under other physical 

impairment. In summary, the pooling of fatal crashes with high resolution information from FARS 

dataset and replacing the fatal crashes in GES data allowed us to examine the impact of various 

attributes on all levels of injury severity and in turn allowed us to draw on the strengths of FARS 

and GES datasets to generate a single, potentially more beneficial sample for analysis. Finally, 

through the elasticity exercise, we demonstrate how our approach can be employed to identify 

factors affecting potentially fatal crashes (non-instantaneous) and improving the chances of 

survival of motor vehicle occupants involved. 

The study is not without limitations. The datasets employed in our analysis are not perfect. 

For example, there are clear documented evidence on underreporting problems in relation to less 

severe crashes (see Elvik and Mysen, 1999; Yamamoto et al., 2008). The injury reporting data is 

fraught with police error (see Tsui et al., 2009; Schiff and Cummings, 2004; Loo and Tsui, 2007). 

However, our study is an attempt to bridge the two datasets and their strengths. Any enhancements 

or improvements to the datasets themselves will further enhance the value of our proposed 

approach. For example, augmenting the police reported data with hospital recorded data would 

allow us to better capture the interaction of transportation crashes and treatment on severity and 

fatality analysis. This would allow us to not be restricted by the questionable 30 day limit for fatal 

records to be considered in FARS. Further, in our research effort to keep the estimation time of 

the validation exercise within a reasonable limit, we have considered a random sample of 6,602 

crashes from GES dataset. Another aspect of interest is the categorization of the fatality spectrum 

- we categorized the spectrum of fatal crashes in seven refined categories of fatalities ranging from 

fatality after thirty days to instant death. There has been earlier work on characterizing the 

distribution of survival times (Trunkey, 1983; Clark et al., 2012). Exploring these characterizations 

is an avenue for future research. Finally, the pooling exercise considered in our analysis is based 

on replacing GES fatal records with FARS fatal records without any exogenous variable specific 

controls. There is scope for considering more advanced pooling approaches where the replacement 

is undertaken by controlling for select exogenous variables such as crash type or vehicle type. 
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FIGURE 1 Flow Chart Showing Research Framework for Validating Pooled dataset 
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Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 

 

FIGURE 2 % Error in Parameter Estimates obtained using Pooled model Plotted against Variable Numbers 
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Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 

 

FIGURE 3 Test Statistics for Parameter Estimates Plotted against Variable Numbers 
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Note - Differences in elasticity effects are calculated as: [Elasticity (Pooled) - Elasticity (Unpooled)]. 

 

FIGURE 4 Differences in Elasticity Effects of Non-Fatal Crash Categories for Pooled and Unpooled Models 
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Note – Fatal 1 (Pooled) = Died between 6 and 30 days of crash,  Fatal 2 (Pooled) = Died between 2 and 5 days of crash, Fatal 3 (Pooled) 

=  Died between 7 and 24 hours of crash, Fatal 4 (Pooled) =  Died between 2 and 6 hours of crash, Fatal 5 (Pooled) =  Died between 31 

and 60 minutes of crash, Fatal 6 (Pooled) =  Died between 1 and 30 minutes of crash and Fatal 7 (Pooled) =  Died instantly.  

 

 

FIGURE 4 Elasticity Effects of Fatal Crash Categories for Pooled and Unpooled Models 
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TABLE 1 Fatal Cases and Weight of Data Samples 

 

Datasets Samples Fatal Cases Weight 

Unpooled  --- 59 --- 

Pooled 

1 1956 59/1956 

2 1945 59/1945 

3 2010 59/2010 

4 1921 59/1921 

5 1983 59/1983 

6 2967 59/2967 

7 3101 59/3101 

8 3062 59/3062 

9 2980 59/2980 

10 2983 59/2983 

11 4976 59/4976 

12 4939 59/4939 

13 4921 59/4921 

14 4931 59/4931 

15 5004 59/5004 

16 8845 59/8845 

 



TABLE 2 Sample Characteristics of “Driver Injury Severity” 

 

Variables 

Sample Fatal Crashes 

Unpooled Data 
Pooled Data (With 

Weight) 
Unpooled Data 

Pooled Data (With 

Weight) 

Frequency 

Driver Characteristics         

  Driver gender (Base: Male)       

    Female 2786 2786 18 18 

  Driver age (Base: Age 25 to 64)       

    Age less than 25 1671 1666 19 14 

    Age above 65 & above 514 514 11 11 

  Restraint system use  (Base: Restrained)       

    Unrestrained 230 233 28 31 

  Under the influence of alcohol 312 325 11 24 

  Other physical impairment 195 197 6 8 

Vehicle Characteristics       

  Vehicle Type (Base: SUV, Passenger car)       

    Pickup 1010 1019 4 13 

    Vans 413 414 2 3 

  Vehicle age (Base: Vehicle age ≤ 5 years)       

      Vehicle age 6-10 years  2077 2068 28 19 

    Vehicle age ≥ 11 years 1897 1903 21 27 

Roadway Design and Operational Attributes       

  Speed limit (Base: Speed limit less than 26 mph)       

    Speed limit 26-50 mph 3948 3940 32 24 

    Speed limit>50mph 1445 1452 25 32 

  Traffic Control Device       

    Other traffic control device 145 148 1 4 



  Type of intersection       

    T intersection 729 731 2 4 

  Traffic-way description         

    Two way-with median 1398 1387 17 6 

Environmental Factor       

  Time of Day (Base: 6.00 a.m. to 11.59 p.m.  )       

    Late night (12.00 a.m. to 5.59 a.m.) 473 472 16 15 

  Surface condition       

    Snowy 262 263 1 2 

Crash Characteristics       

  Collision object (Base: Another moving vehicle)       

    Collision with large stationary  object  525 517 25 17 

    Collision with other object 205 206 0 1 

  Manner of collision (Base: Angular collision)       

    Head-on 347 346 10 9 

    Side swipe-same direction 342 342 1 1 

    Front to rear 1858 1858 1 1 

  Collision location (Base: Non-intersection)       

    Driveway access 625 626 0 1 

    Intersection 2641 2646 6 11 

  Trajectory of vehicle's motions (Base: Going straight)       

    Stopped in Traffic Lane 584 583 1 0 

    Turning right 155 155 0 0 

    Turning Left 680 683 0 3 

    Negotiating a curve 318 325 10 17 

 

 

 



TABLE 3 Log-likelihood values for Equivalent and Actual Eleven Point ordinal “Driver Injury Severity” Models 

 

Samples 

Average log-likelihood 

Log-likelihood Ratio Test Statistic 

Equivalent eleven point ordinal model Actual eleven point ordinal model 

2000 (5 random samples) -5976.897 -5964.741 24.312 

3000 (5 random samples) -5977.325 -5965.546 23.558 

5000 (5 random samples) -5977.418 -5965.788 23.260 

8845 (1 sample) -5977.790 -5966.164 23.252 

 

Note - Pooled data is obtained by replacing 59 fatality records from GES with 8,845 records from the FARS data for the 8,845 sample. 

The same process is applied to other sample sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 4 Estimation Results of “Driver Injury Severity” by using the Population Representative Pooled Dataset 

 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 𝝉𝟓 𝝉𝟔 𝝉𝟕 𝝉𝟖 𝝉𝟗 𝝉𝟏𝟎 

Constant 
2.054 0.127 0.539 0.916 -2.692 -2.712 -2.669 -1.148 -1.282 -0.554 

(0.090) ǂ (0.092) (0.057) (0.342) (8.409) (9.416) (9.873) (4.508) (5.460) (4.619) 

Driver Characteristics 

 Driver gender (Base: Male) 

  Female 0.546 (0.043) 0.122 (0.046) − − − − − − − − − 

 Driver age (Base: Age 25 to 64) 

  Age less than 25 -0.238 (0.048) − − − − − − − − − − − 

  Age above 65 & above 0.145 (0.072) − − − − − − − − − − − 

 Restraint system use  (Base: Restrained) 

  Unrestrained 1.392 (0.116) -0.355 (0.126) − − − − − − − − − 

 

Under the influence of 

alcohol 
0.523 (0.091) − − -0.370 (0.115) − − − − − − − 

 Other physical impairment 0.577 (0.114) − − − − − − − − − − − 

Vehicle Characteristics 

 Vehicle Type (Base: Passenger car) 

  SUV -0.201 (0.055) 0.129 (0.058) − − − − − − − − − 

  Pickup -0.377 (0.064) − − − − − − − − − − − 

  Vans -0.341 (0.087) − − − − − − − − − − − 

 Vehicle age (Base: Vehicle age ≤ 5 years) 

     Vehicle age 6-10 years  0.097 (0.050) − − − − − − − − − − − 

  Vehicle age ≥ 11 years 0.277 (0.051) − − − − − − − − − − − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit less than 26 mph) 

  Speed limit 26-50 mph 0.547 (0.073) -0.168 (0.079) − − − − − − − − − 

  Speed limit>50mph 0.859 (0.082) -0.219 (0.089) − − − − − − − − − 

 Traffic Control Device (Base: No traffic control) 

  Traffic Signal -0.175 (0.053) − − − − − − − − − − − 

  Stop sign -0.325 (0.094) − − -0.320 (0.166) − − − − − − − 

  

Other traffic control 

device 
0.331 (0.127)            

Environmental Factor 

 Time of Day (Base: Morning peak and Off peak ) 



 

 

Evening peak (3.00 pm. 

to 5.59 pm.) -0.111 (0.048) 
− − − − − − − − − − − 

  

Late night (12.00 a.m. to 

5.59 a.m.) 
0.177 (0.079) − − − − − − − − − − − 

 Lighting Condition (Base: Other lighting condition)           

  Dusk 0.229 (0.123) − − − − − − − − − − − 

 Day of Week (Base: Weekdays)             

  Weekend 0.109 (0.047) − − − − − − − − − − − 

 Surface condition (Base: Other surface condition) 

  Snowy -0.587 (0.101) − − − − − − − − − − − 

Crash Characteristics 

 Collision object (Base: Another moving vehicle and collision with small object) 

  

Collision with large 

stationary  object  
− − -0.234 (0.09) − − − − − − − − − 

  

Collision with other 

object 
-2.079 (0.183) − − − − − − − − − − − 

 Manner of collision (Base: Other collision type) 

  Head-on 0.567 (0.08) − − − − − − − − − − − 

  

Side swipe-same 

direction 
-1.519 (0.123) − − − − − − − − − − − 

  

Side swipe-opposite 

direction 
-0.538 (0.182) − − − − − − − − − − − 

  Front to rear -0.911 (0.058) 0.239 (0.064) 0.516 (0.104) − − − − − − − 

  Angular   0.174 (0.058)          

 Collision location (Base: Non-intersection and other location) 

  Driveway access -0.334 (0.073) − − − − − − − − − − − 

 Trajectory of vehicle's motions (Base: Going straight) 

  Stopped in Traffic Lane 0.346 (0.078) − − − − − − − − − − − 

  Turning right -0.610 (0.168) − − − − − − − − − − − 

  Turning Left -0.226 (0.068) − − − − − − − − − − − 

  Changing lane -0.373 (0.169) − − -0.491 (0.302) − − − − − − − 

Situational Variable            

 Number of Passengers (Base: No passenger and more than one passenger)        

  One passenger 0.221 (0.048) − − − − − − − − − − − 

 Driver Ejection (Base: Non ejected out)            

  Ejected Out 3.469 (0.552) − − − − − − − − − − − 



𝜏2 = Threshold between possible injury/non-incapacitating injury; 𝜏3= Threshold between non-incapacitating injury/incapacitating injury; 𝜏4= Threshold between 

incapacitating injury/6to30 days;  𝜏5= Threshold between 6to30 days/ 1 to 5 days; 𝜏6= Threshold between 1 to 5 days/ 7 to 24 hours; 𝜏7= Threshold between  7 to 

24 hours/ 1 to 6 hours; 𝜏8 = Threshold between  1 to 6 hours/ 31 to 60 minutes; 𝜏9 = Threshold between  31 to 60 minutes/ 1 to 30 minutes; 𝜏10 = Threshold 

between  1 to 30 minutes/ Died Instantly 

 
ǂ Standard errors are presented in parenthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A Estimation Results of “Driver Injury Severity” by using Unpooled (GES) Data 

 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 

Constant 
1.2531* -0.53428 0.16637 0.97141 

(0.122) ǂ (0.071) (0.038) (0.075) 

Driver Characteristics 

 Driver gender (Base: Male) 

  Female 0.537 (0.060)2 0.245 (0.066)29 − − − − 

 Driver age (Base: Age 25 to 64) 

  Age less than 25 -0.117 (0.064)3 − − − − − − 

  Age 65 & above 0.237 (0.101)4 -0.213 (0.121)30 − − -0.471 (0.178)42 

 Restraint system use  (Base: Restrained)  

  Unrestrained 1.617 (0.142)5 − − − − -0.361 (0.132)43 

 Under the influence of alcohol 0.570 (0.131)6 − − − − − − 

 Other physical impairment 0.708 (0.140)7 − − − − − − 

Vehicle Characteristics 

 Vehicle Type (Base: SUV, Passenger car)  

  Pickup -0.423 (0.081)8 − − − − − − 

  Vans -0.239 (0.118)9 − − − − − − 

 Vehicle age (Base: Vehicle age ≤ 5 years)  

     Vehicle age 6-10 years  0.315 (0.069)10 0.218 (0.065)31 − − − − 

  Vehicle age ≥ 11 years 0.328 (0.071)11 − − − − − − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit less than 26 mph)  

  Speed limit 26-50 mph 0.642 (0.102)12 − − − − − − 

  Speed limit>50mph 0.896 (0.117)13 − − − − − − 

 Traffic Control Device  

  Other traffic control device 0.465 (0.185)14 − − − − − − 

 Type of intersection  

  T intersection -0.205 (0.088)15 − − − − − − 

 Traffic way description         

  Two way-with median 0.138 (0.069)16 − − − − − − 

Environmental Factor  

 Time of Day (Base: 6.00 a.m. to 11.59 p.m.  )  

  Late night (12.00 a.m. to 5.59 a.m.) 0.281 (0.107)17 − − − − − − 



 

Surface condition  

  Snowy -1.040 (0.153)18 − − − − − − 

Crash Characteristics  

 Collision object (Base: Another moving vehicle)  

  Collision with large stationary  object  0.379 (0.106)19 -0.289 (0.129)32 − − − − 

  Collision with other object -1.827 (0.217)20 -0.637 (0.349)33 − − − − 

 Manner of collision (Base: Angular collision)  

  Head-on 0.669 (0.106)21 − − -0.234 (0.124)38 − − 

  Side swipe-same direction -1.603 (0.157)22 − − − − − − 

  Front to rear -1.159 (0.079)23 − − − − − − 

 Collision location (Base: Non-intersection)  

  Driveway access -0.440 (0.108)24 0.252 (0.119)34 0.303 (0.132)39 − − 

  Intersection − − 0.266 (0.071)35 − − 0.515 (0.133)44 

 Trajectory of vehicle's motions (Base: Going straight)  

  Stopped in Traffic Lane 0.324 (0.111)25 − − 0.529 (0.139)40 − − 

  Turning right -0.991 (0.241)26 − − − − − − 

  Turning Left -0.188 (0.094)27 − − − − − − 

  Negotiating a curve − − 0.266 (0.120)36 − − − − 

𝜏2 = Threshold between possible injury/non-incapacitating injury; 𝜏3= Threshold between non-incapacitating injury/incapacitating injury; 𝜏4= Threshold between 

incapacitating injury/fatal injury 

 
ǂ Standard errors are presented in parenthesis 

* Variable Numbers 

 

 


