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ABSTRACT 

 

In the United States, safety researchers have focused on examining fatal crashes (involving at least 

one fatally injured vehicle occupant) by using Fatality Analysis Reporting System (FARS) dataset. 

FARS database compiles crashes if at least one person involved in the crash dies within thirty 

consecutive days from the time of crash along with the exact timeline of the fatal occurrence. 

Previous studies using FARS dataset offer many useful insights on what factors affect crash related 

fatality, particularly in the context of fatal vs. non-fatal injury categorization. However, there is 

one aspect of fatal crashes that has received scarce attention in the traditional safety analysis. The 

studies that dichotomize crashes into fatal versus non-fatal groups assume that all fatal crashes in 

the FARS dataset are similar. Keeping all else same, a fatal crash that results in an immediate 

fatality is clearly much more severe than another crash that leads to fatality after several days. Our 

study contributes to continuing research on fatal crashes. Specifically, rather than homogenizing 

all fatal crashes as the same, our study analyzes the fatal injury from a new perspective by 

examining fatality as a continuous spectrum based on survival time ranging from dying within 

thirty days of crash to dying instantly (as reported in the FARS data). The fatality continuum is 

represented as a discrete ordered dependent variable and analyzed using the mixed generalized 

ordered logit (MGOL) model. By doing so, we expect to provide a more accurate estimation of 

critical crash attributes that contribute to death. In modeling the discretized fatality timeline, the 

Emergency Medical Service (EMS) response time variable is an important determinant. However, 

it is possible that the EMS response time and fatality timeline are influenced by the same set of 

observed and unobserved factors, generating endogeneity in the outcome variable of interest. 

Hence, we propose to estimate a two equation model that comprises of a regression equation for 

EMS response time and MGOL for fatality continuum with residuals from the EMS model to 

correct for endogeneity bias on the effect of exogenous factors on the timeline of death. Such 

research attempts are useful in determining what factors affect the time between crash occurrence 

and time of death so that safety measures can be implemented to prolong survival. The model 

estimates are augmented by conducting elasticity analysis to highlight the important factors 

affecting time-to-death process. 

 

Keywords: Generalized Ordered Logit, Endogeneity, Two-stage residual inclusion, FARS, 

Elasticities 
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1. INTRODUCTION 

 

Road traffic crashes and their consequences such as injuries and fatalities are acknowledged to be 

a serious global health concern. In the United States (US), motor vehicle crashes are responsible 

for more than 90 deaths per day (NHTSA, 2012). Moreover, these crashes cost the society $230.6 

billion annually (GHSA, 2009). In an attempt to reduce the consequence of road traffic crashes 

and to devise countermeasures, transportation safety researchers study the influence of various 

exogenous variables on vehicle occupant injury severity. In identifying the critical factors 

contributing to crash injury severity, safety researchers have focused on either examining fatal 

crashes (involving at least one fatally injured vehicle occupant) or traffic crashes that compile 

injury severity spectrum at an individual level (such as no injury, possible injury, non-

incapacitating injury, incapacitating injury and fatality). In the US, the former category of studies 

predominantly use the Fatality Analysis Reporting System (FARS) database (see Zador et al., 

2000; Gates et al., 2013) while the latter group of studies typically employ the General Estimates 

System (GES) database (see Kockelman and Kweon, 2002; Eluru and Bhat, 2007; Yasmin and 

Eluru, 2013). FARS database compiles crashes if at least one person involved in the crash dies 

within thirty consecutive days from the time of crash. Further, FARS database reports the exact 

timeline of the fatal occurrence within thirty days from the time to crash. 

A number of research efforts have examined the impact of exogenous characteristics (such 

as driver characteristics, vehicle characteristics, roadway design and operational attributes, 

environmental factors and crash characteristics) associated with fatal crashes employing crash data 

with at least one fatality. These studies employed two broad dependent variable categorizations – 

(1) fatal/non-fatal or (2) fatal/serious injury. The binary categorization was analyzed employing 

descriptive analysis or logistic regression methods for identifying the critical factors affecting fatal 

crashes (for example see Zhang et al., 2013; Al-Ghamdi, 2002; Huang et al., 2008; Travis et al., 

2012). Several studies have also investigated the factors affecting the involvement in a fatal crash 

as a function of individual characteristics. The important individual behavioral determinants of 

fatal crashes include excessive speed, violation of traffic rules and lack of seat belt use (Siskind et 

al., 2011; Valent et Al., 2002; Sivak et al., 2010; Viano et al., 2010). Other driver attributes such 

as aggressive driving behavior, unlicensed driving and distraction during driving are identified to 

be the most significant contributors of fatal crashes for young drivers (Lambert-Bélanger et al., 

2012; Hanna et al., 2012; Chen et al., 2000). Studies have also examined the effect of race/ethnicity 

in fatal crashes (Braver, 2003; Romano et al., 2006; Campos-Outcalt et al., 2003; Harper et al., 

2000). On the other hand, most critical factors identified from earlier research for older drivers in 

fatal crashes are frailty and reduced driving ability (Baker et al., 2003; Lyman et al., 2002, 

Thompson et al., 2013). Gates et al. (2013) investigate the influence of stimulants (such as 

amphetamine, methamphetamine and cocaine) on unsafe driving actions in fatal crashes. Stübig et 

al. (2012) investigate the effect of alcohol consumption on preclinical mortality of traffic crash 

victims (see also Fabbri et al., 2002).  

Many of the earlier studies also focused on the vehicular characteristics of fatal crashes 

(Fredette et al., 2008) and demonstrated that the relative risk of fatality is much higher for the 

driver of lighter vehicle (sedan, compact car) compared to those in the heavier vehicle (SUV, Vans, 

Pickups). Among the environmental factors, it was found that collision during night time (Arditi 

et al., 2007) has the most significant negative impact on fatality risk in a crash. In terms of crash 

characteristics, head-on crash and crashes on high speed limit road locations increased the 

probability of fatalities in a crash (Fredette et al., 2008; Bédard et al., 2002).  
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These studies offer many useful insights on what factors affect crash related fatality, 

particularly in the context of fatal vs. non-fatal injury categorization. However, there is one aspect 

of fatal crashes that has received scarce attention in the traditional safety analysis. The studies that 

dichotomize crashes into fatal versus non-fatal groups assume that all fatal crashes in the FARS 

dataset are similar. Keeping all else same, a fatal crash that results in an immediate fatality is 

clearly much more severe than another crash that leads to fatality after several days. In fact, there 

is evidence from epidemiological studies (Tohira et al., 2012) that the risk factors associated with 

early trauma deaths of crash victims are different from the risk factors associated with late trauma 

deaths. For instance, Tohira et al. (2012) reported that older drivers (aged 65 years or older) and/or 

crash victims with a depressed level of consciousness were at increased risk of late trauma death. 

Research attempts to discern such differences are useful in determining what factors affect the time 

between crash occurrence and time of death so that countermeasures can be implemented to 

improve safety situation and to reduce road crash related fatalities. Early EMS (Emergency 

Medical Service) response is also argued to potentially improve survival probability of motor 

vehicle crash victims (Clark and Cushing, 2002; Clark et al., 2013). In fact, Meng and Weng (2013) 

reported 4.08% decrease in the risk of death from one minute decrease in EMS response time, 

while Sánchez-Mangas et al. (2010) reported that a ten minutes EMS response time reduction 

could decrease the probability of death by one third. Given the import of this variable, it is also 

important to explore the effect of EMS response time in examining crash fatalities. 

The objective of our study is to identify the associated risk factors of driver fatalities while 

recognizing that fatality is not a single state but rather is made up of a timeline between dying 

instantly to dying within thirty days of crash (as reported in the FARS data). The detailed 

information available in FARS provides us a continuous timeline of the fatal occurrences from the 

time of crash to death. This allows for an analysis of the survival time of victims before their death. 

To be sure, earlier research efforts also focused on examining the factors influencing the time 

period between road crash and death (Golias and Tzivelou, 1992; Marson and Thomson, 2001; 

Feero et al., 1995; Al-Ghamdi, 1999; Gonzalez et al., 2006; Gonzalez et al., 2009; Brown et al, 

2000). These studies demonstrated that nature of injury, EMS response time and pre-hospital 

trauma care were the main factors affecting the time till death and concluded that timely EMS 

response with proper pre-hospital trauma care may improve the survival outcome. For analysis of 

the time to death data, these studies employed univariate statistical analysis (such as descriptive 

analysis or Fisher’s exact test, Student t test). Most recently, Ju and Sohn (2014) analyzed the 

factors that are potentially associated with variation in the expected survival time by using Weibull 

regression approach and identified that survival probabilities and expected survival times are 

related to changes in delta V, alcohol involvement, and restraint systems. But, none of these studies 

investigate the timeline of death at the disaggregate level as a function of exogenous characteristics 

for a crash victim. Our study builds on existing fatality analysis research by developing a 

disaggregate level model for the discrete representation of the continuous fatality timeline using 

the FARS dataset. The fatality timeline information obtained through FARS is categorized as an 

ordered variable ranging from death in thirty days to instantaneous death in seven categories as 

follows: died between 6th-30 days of crash, died between 2nd-5 days of crash, died between 7th-

24 hours of crash, died between 1st-6 hours of crash, died between 31st-60 minutes of crash, died 

between 1st-30 minutes of crash and died instantly. 

Due to the inherent ordered nature of the fatality variable created, an ordered discrete 

outcome modeling approach is an appropriate framework for examining the influence of 

exogenous factors on the timeline of death. However, the traditional ordered outcome models 
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restrict the impact of exogenous variables on the outcome process to be same across all alternatives 

(Eluru et al, 2008). The recent revival in the ordered regime has addressed this limitation by 

allowing the analyst to estimate individual level thresholds as function of exogenous variables as 

opposed to retaining the same thresholds across the population (as is the case in the standard 

ordered logit (OL)). The approach is referred to as the Generalized Ordered Logit (GOL) (or partial 

proportional odds logit) (Yasmin and Eluru, 2013; Eluru, 2013; Mooradian et al, 2013) model. At 

the same time, the conventional police/hospital reported crash databases may not include 

individual specific behavioural or physiological characteristics and vehicle safety equipment 

specifications for crashes. Due to the possibility of such critical missing information, it is important 

to incorporate the effect of unobserved attributes within the modeling approach (see for example 

Srinivasan, 2002; Eluru et al., 2008; Kim et al., 2013). In non-linear models, neglecting the effect 

of such unobserved heterogeneity can result in inconsistent estimates (Chamberlain, 1980; Bhat, 

2001). Hence, we employ the mixed generalized ordered logit (MGOL) framework to examine 

driver fatalities characterized as an ordinal discrete variable of an underlying severity continuum 

of fatal injuries.  

In modeling the discretized fatality timeline, the EMS response time variable is an 

important determinant. However, it is possible that the EMS response time and fatality timeline 

are influenced by the same set of observed and unobserved factors, generating endogeneity in the 

outcome model of interest. In fact, it was identified that EMS response time are affected by several 

external environmental and regional factors (Brodsky, 1992; Meng and Weng, 2013). Such 

correlations impose challenges in using the EMS response variable as an explanatory variable in 

examining fatality outcome of crashes. For example, consider two potential crash scenarios. In 

scenario 1 a relatively major crash occurs and in scenario 2 a minor crash occurs. When the 

information of a crash is provided the urgency with which the EMS teams are deployed for the 

first scenario is likely to be higher than the urgency for the second scenario. So, we potentially 

have a case where EMS time for arrival is lower for scenario 1 but potentially the consequences 

of the crash for scenario 1 are much severe i.e. survival time is much smaller. So, in a traditional 

modeling approach one would conclude that lower EMS arrival times are associated with smaller 

survival times. This is a classic case of data endogeneity affecting the modeling results. Hence, it 

is necessary to account for this endogeneity in the modeling process. In our study, we propose to 

apply an econometric approach to accommodate for this. Specifically, we propose to estimate a 

driver-level fatal injury severity model while also accounting for endogeneity bias of EMS arrival 

time using ordered outcome modeling framework with endogeneity treatment. In doing so, the 

correction for endogeneity bias is pinned down in the ordered outcome models by employing a 

two-stage residual inclusion (2SRI) approach. 

In summary, the current research makes a three-fold contribution to the literature on vehicle 

occupant injury severity analysis. First, our study is the first attempt to analyze the fatal injury 

from a new perspective and examine fatality as a continuous spectrum based on survival time 

ranging from dying within thirty days of crash to dying instantly. Second, we propose and estimate 

a two equation model that comprises of regression for EMS response time and MGOL with 

residuals from the EMS model to correct for endogeneity bias on the effect of exogenous factors 

on the timeline of death. Finally, we compute elasticity measures to identify important factors 

affecting survival time after motor vehicle crash.  

The rest of the paper is organized as follows. Section 2 provides details of the econometric 

model framework used in the analysis. In Section 3, the data source and sample formation 

procedures are described. The model estimation results and elasticity effects are presented in 
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Section 4 and 5, respectively. Section 6 concludes the paper and presents directions for future 

research. 

 

2. MODEL FRAMEWORK 

 

The focus of our study is to examine driver-level fatal injury at a disaggregate level while also 

accounting for endogeneity bias of EMS arrival time by using a MGOL model framework with 

endogeneity treatment. In doing so, the correction for endogeneity bias is pinned down in MGOL 

model by employing a 2SRI approach1 (as opposed to the two-stage predictor substitution 

approach). The framework used for MGOL model with endogenous treatment consists of a two-

stage procedure. In the first stage, the residuals are computed from the linear regression estimates 

of the endogenous variable (EMS arrival time). In the second stage, MGOL model is estimated by 

including the first-stage residuals as additional regressor along with the endogenous variable in 

examining the outcome of interest. In this section, econometric formulation for MGOL model with 

the 2SRI treatment is presented. 

 

2.1 First Stage 

 

Let 𝑖 (𝑖 = 1,2, … … , 𝐼) and 𝑗 (𝑗 = 1,2, … … , 𝐽) be the indices to represent driver and the time 

between crash occurrence and time of death for each fatally injured driver 𝑖. In this paper, index 𝑗 

takes the values of: died between 6th to 30 days of crash (𝑗 = 1), died between 2nd to 5 days of 

crash (𝑗 = 2), died between 7th to 24 hours of crash (𝑗 = 3), died between 2nd to 6 hours of crash 

(𝑗 = 4), died between 31st to 60 minutes of crash (𝑗 = 5), died between 1st to 30 minutes of crash 

(𝑗 = 6) and died instantly (𝑗 = 7) for all fatally injured drivers. Let us also assume that 

𝑦𝑖 represents the discrete levels of time to death, 𝒙i is a column vector of observable exogenous 

variables, 𝒖𝑖 is a set of 𝑒 (𝑒 = 1,2, … … , 𝐸) endogenous variables and 𝒒𝑖 is a 1 × 𝐸 set of 

unobservable endogenous variables possibly correlated with both the outcome and the endogenous 

variables, generating endogeneity bias in the outcome model. In our analysis, we hypothesize that 

EMS arrival time may be correlated with the unobservable determinants of fatal injury severity of 

drivers, thus we have 𝑒 = 1 in the current study context. Following Terza et al. (2008), we present 

the endogeneity of 𝒖𝑖 by assuming an idiosyncratic influence of the same latent variables 𝒒𝑖 on 

both the outcome and endogenous variables as a linear regression model as:    

𝐿𝑖 = 𝜌𝒘𝑖 + 𝒒𝑖 (1)  

where,  

𝒘𝑖 = [𝒙𝑖  𝒗𝑖] and 𝒗𝑖 is a set of at least 𝐸 instrumental variables 

𝜌 is a corresponding row vector of parameter estimates 

The residuals of endogenous variables can be computed as:  

𝑞𝑖
𝑅 = 𝒖𝑖 − 𝑃𝑟(𝒖𝑖|𝒘𝑖)  (2)  

                                                 
1 The reader is referred to Terza et al. (2008) for a detailed discussion of why the two stage residual inclusion method 

provides consistent estimates in non-linear models, while the two stage predictor substitution method does not. 
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where, 𝑃𝑟(𝒖𝑖|𝒘𝑖) is the predictor of 𝒖𝑖. 

 

2.2 Second Stage 

 

In the proposed two-stage model, the modeling of discrete levels of fatal crashes is undertaken 

using MGOL specification. The MGOL accommodates unobserved heterogeneity in the effect of 

exogenous variable on injury severity levels in both the latent injury risk propensity function and 

the threshold functions (Srinivasan, 2002; Eluru et al., 2008). In the MGOL model, the discrete 

levels of time to death (𝑦𝑖) are assumed to be a mapping (or partitioning) of an underlying 

continuous latent variable (𝑦𝑖
∗) as follows: 

𝑦𝑖
∗ = (𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝒒𝑖 + 휀𝑖  ,   𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑖,𝑗−1 <  𝑦𝑖

∗ < 𝜏𝑖,𝑗 (3)  

where,  

𝛽, 𝜎 and 𝜆 are corresponding row vectors of associated parameters for 𝒙𝑖, 𝒖𝑖 and 𝒒𝑖, 

respectively. 

𝛼𝑖 is a row vector representing the unobserved factors specific to driver 𝑖 and his/her trip 

environments  

휀𝑖 is a random disturbance term assumed to be standard logistic 

𝜏𝑖,𝑗  represents the thresholds 

Once the linear regression for the endogenous variable is estimated, we can insert the 

computed residuals of equation 2 as additional regressors in equation 3 for the outcome of interest. 

Thus, substituting the residuals for the unobservable latent factors, we can re-write equation 3 as: 

𝑦𝑖
∗ = (𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖

𝑅 + 휀𝑖 ,   𝑦𝑖 = 𝑗, 𝑖𝑓 𝜏𝑖,𝑗−1 <  𝑦𝑖
∗ < 𝜏𝑖,𝑗 (4)  

In the above setting, the endogeneity of 𝒖𝑖 will be absent if 𝜆 turns out to be zero. Moreover, 

in equation 4, 𝜏𝑖,𝑗  (𝜏𝑖,0 = −∞ , 𝜏𝑖,𝐽 = ∞) represents the upper threshold associated with driver i 

and time scale j, with the following ordering conditions: (−∞ < 𝜏𝑖,1 < 𝜏𝑖,2 <  … … … < 𝜏𝑖,𝐽−1 <

+∞). To maintain the ordering conditions and allow the thresholds to vary across drivers, Eluru et 

al. (2008) propose the following non-linear parameterization of the thresholds as a function of 

exogenous variables:  

𝜏𝑖,𝑗 = 𝜏𝑖,𝑗−1 + 𝑒𝑥𝑝 [(𝛿𝑗 + 𝛾𝑖,𝑗)𝒛𝑖,𝑗] (5)  

where, 𝒛𝑖𝑗 is a set of exogenous variable associated with 𝑗 th threshold; 𝛿𝑗 is a time to death-

specific row vector of parameters to be estimated (we need to restrict 𝛿1 to be a row vector of zero 

values for identification reason) and 𝛾𝑖𝑗 is another row vector representing the unobserved factors 

specific to driver 𝑖 and his/her trip environments. The traditional OL model assumes that the 

thresholds 𝜏𝑖,𝑗 remain fixed across drivers (𝜏𝑖,𝑗 = 𝜏𝑗   ∀  𝑖); that is, it assumes that 𝛿𝑗  has all zero 

elements for all  𝑗 values (except for the constant). Thus, the model will collapse to a simple OL 

model if 𝛼𝑖 turns out to be zero in equation 4 and 𝜏𝑖,𝑗 remain fixed across driver in equation 5. On 
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the other hand, if 𝛼𝑖 and 𝛾𝑖,𝑗 terms of equation 4 and 5 are found to be zero in model estimation, 

then the model will collapse to simple GOL model.  

In equations 4 and 5, we assume that 𝛼𝑖 and 𝛾𝑖𝑗 are independent realizations from normal 

distribution for this study. Thus, conditional on 𝛼𝑖 and 𝛾𝑖𝑗, the probability expression for individual 

𝑖 and alternative 𝑗 in MGOL model with the 2SRI treatment take the following form: 

𝜋𝑖𝑗 = 𝑃𝑟(𝑦𝑖 = 𝑗|𝛼𝑖, 𝛾𝑖𝑗) 

       = 𝛬[(𝛿𝑗 + 𝛾𝑖,𝑗) 𝒛𝑖,𝑗 − {(𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖
𝑅}] − 𝛬[(𝛿𝑗−1 + 𝛾𝑖,𝑗−1) 𝒛𝑖,𝑗

− {(𝛽 + 𝛼𝑖)𝒙𝑖 + 𝜎𝒖𝑖 + 𝜆𝑞𝑖
𝑅}] 

(6)  

The unconditional probability can subsequently be obtained as: 

𝑃𝑖𝑗 = ∫ [𝑃𝑟(𝑦𝑖 = 𝑗|𝛼𝑖, 𝛾𝑖𝑗)] ∗ 𝑑𝐹(𝛼𝑖, 𝛾𝑖𝑗)𝑑(𝛼𝑖, 𝛾𝑖𝑗)
𝛼𝑖,𝛾𝑖𝑗

 (7)  

The parameters to be estimated in the MGOL model with the 2SRI treatment are: the 

parameters corresponding to the linear regression (𝜌), the parameters corresponding to the 

propensity (𝛽, 𝜎, 𝜆 𝑎𝑛𝑑 𝛼𝑖) and the parameters corresponding to thresholds (𝛿𝑗 𝑎𝑛𝑑 𝛾𝑖,𝑗). In this 

study, we use a quasi-Monte Carlo (QMC) method proposed by Bhat (2001) for discrete outcome 

model to draw realization from its population multivariate distribution. Within the broad 

framework of QMC sequences, we specifically use the Halton sequence (4,000 Halton draws) in 

the current analysis (see Eluru et al., 2008 for a similar estimation process).  

 

3. DATA  

 

3.1 Data Source 

 

The data for the current study is sourced from the FARS database for the year 2010. FARS data is 

a census of all fatal crashes in the US and compiles crashes if at least one person involved in the 

crash dies within thirty consecutive days from the time of crash. The FARS database has a record 

of 30,196 fatal crashes with 32,885 numbers of fatalities for the year 2010. This data base is 

obtained from the US Department of Transportation, National Highway Traffic Safety 

Administration’s National Center for Statistics and Analysis (ftp://ftp.nhtsa.dot.gov). The FARS 

dataset provides a continuous timeline of the fatal occurrences from the time of crash until thirty 

days. It also provides information on a multitude of factors (driver characteristics, vehicle 

characteristics, roadway design and operational attributes, environmental factors, crash 

characteristics and situational variables) representing the crash situation and events.  

 

3.2 Sample Formation and Description 

 

This study is focused on fatality outcome of passenger vehicles’ drivers who were involved in 

either a single or two vehicle crashes. The crashes that involve more than two vehicles are excluded 

ftp://ftp.nhtsa.dot.gov/
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from the dataset. Commercial vehicles involved collisions are also excluded to avoid the potential 

systematic differences between commercial and non-commercial driver groups. From the dataset, 

only the drivers who were fatally injured are considered for the current study. The final FARS 

dataset, after removing records with missing information for essential attributes consisted of about 

5,102 driver records. The continuous timeline (computed as the difference between declared death 

time and crash time) provided in FARS was then discretized as a seven point discrete ordinal 

variable to represent the scale of fatal injury severity of drivers involved in these crashes - from 

least severe to most severe fatal crashes as follows: 1) Died between 6th to 30 days of crash, 2) 

Died between 2nd to 5 days of crash, 3) Died between 7th to 24 hours of crash, 4) Died between 

2nd to 6 hours of crash, 5) Died between 31st to 60 minutes of crash, 6) Died between 1st to 30 

minutes of crash and 7) Died instantly. The distributions of driver fatalities over the fatality scale 

in our final estimation sample are presented in Table 1. We adopted a seven alternative discrete 

spectrum for our analysis based on observed frequencies and time to death groupings of policy 

interest. It is important to note that, within an ordered outcome structure, it would be relatively 

easy to incorporate a larger number of alternative categories, if needed, while still retaining a 

parsimonious specification. From Table 1 we can see that more that 60% drivers died within one 

hour of crash and almost one third of these crash victims are reported to die instantly. Also, only 

5.9% of the drivers can evade mortality more than five days of crashes.  

Table 2 offers a summary of the sample characteristics of the exogenous factors in the 

estimation dataset. From the descriptive analysis, we observe that a large portion of crashes occur 

on high speed limit road (54.5%), on rural road (62.8 %), during dry weather condition (70.6%) 

and at non-intersection location (75.9%). The majority of drivers are aged between 25 and 64 

(57.1%). In addition to the variables describing the crash situation and events presented in Table 

2, FARS database also provides information on crash notification time, EMS response time and 

time of EMS arrival at hospital. From this information, it is possible to compute EMS response 

time (as the difference between EMS arrival time at the crash scene and crash time) and hospital 

arrival time (as the difference between EMS arrival at hospital and EMS arrival at crash scene). 

However, EMS arrival time at hospital is available only for the crash victim who arrived first at 

hospital among all other crash victims (if present) for that specific crash. Therefore, hospital arrival 

time is not available for all fatal records of driver, and, hence is not considered in our final 

estimation sample. On the other hand, the sample we use in the current study provides information 

about the EMS response time. From the descriptive statistics of this variable we observe that EMS 

response time exceeds one hour – most popularly referred to as the “golden hour” – only for 3.1% 

of records. The median EMS response time is about 11 minutes, with a range of 0 minute to 

approximately 9.5 hours. 

 

4. EMPIRICAL ANALYSIS 

 

4.1 Variables Considered 

 

In our analysis, we selected a host of variables from six broad categories: driver characteristics 

(including driver age, alcohol consumption and previous driving conviction records), vehicle 

characteristics (including vehicle age ), roadway design and operational attributes (including speed 

limit, traffic control device, roadway functional class and land use), environmental factors 

(including time of day, lighting condition and weather condition), crash characteristics (including 

manner of collision and collision location) and situational variable (including driver ejection, 
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number of passengers and EMS response time). The final specification of the model development 

was based on combining the variables when their effects were not statistically different and by 

removing the statistically insignificant variables in a systematic process based on statistical 

significance (95% confidence level). For continuous variables, linear, polynomial and spline forms 

were tested. 

 

4.2 Model Specification and Overall Measures of Fit 

 

In the research effort, initially we estimated three different models: 1) OL, 2) GOL and 3) MGOL, 

by considering EMS response time as an explanatory variable in our empirical analysis. In our 

initial specifications of all the three aforementioned models we obtained a counterintuitive result 

for EMS response time indicating that the likelihood of early death decreases with an increase in 

EMS response time. Therefore, to further explore the effect of this indicator variable, several 

specifications (log transformation, dummy categories) of EMS response time have been explored 

in OL, GOL and MGOL frameworks. However, for all the aforesaid specifications, we observe 

that a longer EMS response time has negative impact on the survival probability of drivers in the 

current study context. The result could be a manifestation of endogeneity between crash 

seriousness and EMS response time i.e. severe crashes are likely to have shorter EMS times while 

less severe crashes are likely to have longer EMS times. So, in such scenarios the early arrival of 

EMS coincides with early death causing a non-intuitive parameter estimate. Thus, to control for 

the endogeneity of EMS response time with fatal crash outcomes, we include a residual variable 

through 2SRI method in examining the fatality spectrum. To that extent, we have further estimated 

the following three ordered outcome models with endogenous treatment: 1) OL with 2SRI 

treatment, 2) GOL with 2SRI treatment and 3) MGOL model with 2SRI treatment. After 

controlling for the endogeneity, the coefficient on the logarithm of EMS response time is found 

out to be positive in all three model specifications indicating that the likelihood of early death 

increases with an increase in EMS response time. 

Prior to discussing the estimation results, we compare the performance of these models in 

this section. At first, the exogeneity of regressors 𝒖𝑖 in equation 4 is tested for 𝜆 = 0 by using 

likelihood ratio (LR) test within each set of models. The LR test statistic is computed as 2[𝐿𝐿𝑈 −
𝐿𝐿𝑅], where 𝐿𝐿𝑈 and 𝐿𝐿𝑅 are the log-likelihood of the unrestricted and the restricted models, 

respectively. The computed value of the LR test is compared with the 𝜒2 value for the 

corresponding degrees of freedom. These estimates are presented in Table 3. From the first three 

rows of LR test values in table 3 we can see that all three models with 2SRI treatment outperform 

the corresponding models without 2SRI treatments at any significance level. The LR test 

comparisons confirm the importance of accommodating endogoneity between EMS response time 

and fatal injury outcome in the analysis of driver fatalities. Further, we also compare the estimated 

ordered models with 2SRI treatments by using LR test for selecting the preferred model among 

those. The results are presented in last three rows of Table 3. The LR test values indicate that 

MGOL model with 2SRI treatment outperforms the OL model with 2SRI treatment at any level of 

statistical significance. The MGOL model with 2SRI treatment outperforms the GOL model with 

2SRI treatment at the 0.05 significance level. The comparison exercise clearly highlights the 

superiority of the MGOL model with 2SRI treatment in terms of data fit compared to all the other 

ordered models.  
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4.3 Estimation Results 

 

In presenting the effects of exogenous variables in the model specification, we will restrict 

ourselves to the discussion of the MGOL model with 2SRI treatment. Table 4 presents the 

estimation results. To reiterate, the dependent variable under consideration is the 7 point ordinal 

variable defined as: died between 6th-30 days of crash, died between 2nd-5 days of crash, died 

between 7th-24 hours of crash, died between 1st-6 hours of crash, died between 31st-60 minutes 

of crash, died between 1st-30 minutes of crash and died instantly. Estimation results of Table 4 

has six different columns. The first column corresponds to the propensity and represents the 

estimates of the parameters of equation 4. From second to sixth columns of estimation results in 

Table 4 corresponds to the thresholds and represent parameters of equation 5. In MGOL model, 

when the threshold parameter is positive (negative) the result implies that the threshold is bound 

to increase (decrease); the actual effect on the probability is quite non-linear and can only be judged 

in conjunction with the influence of the variable on propensity and other thresholds. In the 

following sections, the estimation results are discussed by variable groups. 

 

Driver Characteristics: The effect of driver age is found to have significant impact on the length 

of hospital stay before death. The parameter characterizing the effect of young driver (age 24 & 

less) suggests that the likelihood of dying earlier is lower for young driver compared to middle-

aged (age 25-64) driver. The negative sign of latent propensity associated with old driver (age 65 

& above) suggests that the likelihood of dying earlier is lower for older driver compared to middle-

aged driver. On the other hand, the impacts of old driver on both of the fourth and fifth thresholds 

are negative. The results suggest an increased probability of dying within 6th-30 days of crash and, 

also in general, a decreased possibility of instant death, presumably due to the declined wound 

healing and immune competence of drivers with advancing age after surviving the early phase of 

trauma (Tohira et al., 2012).  

As expected, MGOL model estimates related to alcohol impairment indicate a higher 

likelihood of early mortality risk of alcohol impaired drivers compared to the sober drivers. At the 

same time, the positive values of the second threshold of alcohol impaired driver reflects an 

increase in the probability of dying within 2nd-5 days of crash. Intoxicated drivers are identified 

to be less immune to post traumatic response and suffer from more severe abdominal injuries 

(Zeckey et al., 2011; Stübig et al., 2012). Furthermore, higher impact speed differential due to the 

risk taking disposition of alcohol intoxicated driver presumably reduces the time to death of this 

group of drivers (Soderstrom et al., 2001).  

Previous driving records also have significant influence on time to death after crash. The 

results associated with previous recorded suspension and revocation of driving licence indicates 

that an increase in number of previous recorded suspension and revocation deceases the likelihood 

of early mortality. The result is perhaps indicating more cautious driving of this group of driver to 

avoid any further conviction while driving. Also, the result indicates that drivers are less likely to 

evade early mortality with an increasing record of other previous record of harmful motor vehicle 

convictions (other than previous recorded suspension and revocation of driving licence, previous 

recorded crashes, previous drinking convictions and previous speeding convictions). However, the 

effect of other previous record of harmful motor vehicle convictions variable results in an estimate 

that is normally distributed with mean 0.104 and standard deviation of 0.208 implying that almost 

71% of the drivers with higher records of earlier harmful motor vehicle convictions involved in 

the collision sustain early death. 
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Vehicle Characteristics: Among different vehicle characteristics explored in this study, only 

vehicle age is significant in the final model specification. Vehicle age result does not have any 

effect on the propensity of time to death after crash, but demonstrates a higher likelihood of death 

within 1st-30 minutes of crash for the driver of old vehicles (vehicle age≥11 years) and in general, 

a higher probability of instant death in a crash. The result highlights the advantages of newer 

vehicle fleet  presence of advanced safety technologies (electronic stability control, improvement 

in air bag design, crash cage, energy-absorbing steering columns, crash-resistant door locks and 

high-penetration-resistant windshields) and designs of newer vehicle with improved crash 

worthiness (O'Neill, 2009; Ryb et al., 2011).  

 

Roadway Design and Operational Attributes: The results for speed limit indicate that the 

propensities to die earlier are higher for crashes occurring on roads with medium or higher speed 

limit roads relative to crashes on lower speed limit roads. As is expected, within the two speed 

categories considered, the higher speed category has a larger impact relative to the medium speed 

category, which underscores the fact that the probability of early mortality risk increases with the 

increasing speed limits of roadways. MGOL model estimates for higher speed limit results in a 

parameter that is normally distributed with a mean 0.359 and standard deviation 0.447, which 

indicates that almost 78% of the drivers cannot evade early death for the crashes occurring on 

higher speed limit roads. Higher speed, representing average driving speed, significantly increases 

the kinetic energy of crashes (Elvik, 2004; Sobhani et al., 2011) resulting in medical complications 

with multiple injuries and traumatic brain injury to the victims (Weninger and Hertz, 2007). 

Further, the cabin intrusion caused by high mechanical force of such crash might also increase the 

extrication time of victims from the damaged vehicle (Weninger and Hertz, 2007). Crashes at stop-

sign controlled or other traffic controlled (such as warning sign, regulatory sign, railway crossing 

sign) intersections seem to increase the likelihood of early death relative to crashes at other 

locations, possibly suggesting non-compliance with these traffic control devices and judgment 

problems (Chipman, 2004; Retting et al., 2003). 

 

Environmental Factors: With respect to time of day, the latent propensities for off peak and evening 

peak periods (related to morning peak and nigh-time) are found negative, indicating lower 

likelihood of early mortality, may be a result of traffic congestion and slow driving speeds during 

these periods. At the same time, the effect of off peak period on the threshold indicates a lower 

probability of dying within 1st-30 minutes after crash. The weather condition effects simplified to 

a simple binary representation of cloudy condition. The result indicates that if collisions occur 

during cloudy weather (relative to those during other weather conditions) the drivers are less likely 

to evade early death, perhaps because of the reduced visibility, which presumably results in 

reduced perception-reaction and reduced ability to take evasive actions at the crash incident (Tay 

et al., 2011). The effect of cloudy weather condition on the threshold also indicates increased 

likelihood of death within 2nd-5 days of crash.  

 

Crash Characteristics: With respect to manner of collision, the time to death propensity is observed 

to be lower for front-to-rear collision relative to other manners of collision. The results associated 

with a head-on collision reflect a higher probability of death within 1st-6 hours of crash and in 

general indicate the anticipated increased likelihood of early death. Head-on collisions are often 

caused by drivers violating traffic rules, crossing the centerline by mistake and losing control of 
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their vehicles (Zhang and Ivan, 2005). The pre-impact speed vectors of motor vehicles are directed 

in opposing directions during a head-on collision, resulting in greater dissipation of kinetic energy 

and heavier deformation of motor vehicle bodies (Prentkovskis et al., 2010), resulting in higher 

risk of injury.  

As observed in several previous studies (Al-Ghamdi, 2002), the results related to crash 

location of our study reflect an increased injury risk propensity for collision at non-intersection 

location (related to crashes at intersection and other locations). However, the effects of “non-

intersection location” indicator in threshold parameterization are relatively complex. It has a 

positive impact on the threshold between 1st-6 hours and 31st-60 minutes crash outcome 

categories; while it has a negative impact on the threshold between 31st-60 minutes and 1st-30 

minutes categories. In general, the net implication is that collision at non-intersection location has 

a higher probability of sustaining early death (the specific impact of other fatal crash categories on 

driver fatalities are context-specific).  

 

Situational Variables: As identified in several previous studies (Palanca et al., 2003), the result 

related to driver ejection indicate an increased early death propensity. Number of passenger in 

vehicle at the time of collision is also found to have significant impact on the time to death of 

driver. The results related to presence of more passengers reflect an increased early death 

propensity, perhaps indicating inattentiveness to the driving task due to distraction caused by in 

vehicle interactions among occupants. 

The last two rows of estimation results in Table 4 represent the associated results of: (1) 

the logarithm of EMS response time and (2) the residual obtained from regressing the logarithm 

of EMS response time variable on morning peak, late-night, dark-not lighted, rain, snowy, rural, 

principle arterial and minor arterial indicator variables2. The role of the residual variable is to 

control for the endogeneity of the EMS response time variable in examining the time to death.  

From Table 4, we can see that after controlling for endogeneity, the coefficient on the logarithm 

of EMS response time is positive and statistically significant indicating that EMS response time 

has the expected impact on severity once we control for the endogeneity bias. Specifically, as can 

be observed from the coefficient of the residual term, the non-intuitive impact of EMS time was a 

result of the correlation between EMS time and unobserved determinants3. Through our approach, 

by accounting for the endogeneity we were able to differentiate between the observed impact of 

EMS time and the spurious effect due to the unobserved factors.  

 

5. ELASTICITY EFFECTS 

 

The parameter effects of the exogenous variables in Table 4 do not provide the magnitude of the 

effects on time to death of drivers. For this purpose, we compute the aggregate level “elasticity 

effects” for all categories of independent variable (see Eluru and Bhat, (2007) for a discussion on 

the methodology for computing elasticities) and present the computed elasticities in Table 5. The 

effects are computed for all categories of fatal crashes. The results in the table can be interpreted 

as the percentage change (increase for positive sign and decrease for negative sign) in the 

probability of the fatal severity categories due to the change in that specific exogenous variable.  

                                                 
2 The estimation results for the linear regression model are presented in Appendix A. 
3 Several specifications were tested to examine the coefficient on the residual from regression of Logarithm of EMS 

arrival time. The coefficient was relatively stable across these specifications and we chose the model that offered the 

best fit. 
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The following observations can be made based on the elasticity effects of the variables 

presented in Table 5. First, the results in Table 5 indicate that there are considerable differences in 

the elasticity effects across different fatal crash categories, suggesting that fatality is not a single 

state but rather is made up of multiple discrete states from dying instantly to dying within thirty 

days of crash. Second, the most significant variables in terms of lower survival probability for 

drivers are crashes on high speed limit roads, crashes on medium speed limit roads and head-on 

crashes. A forgiving road environment should be designed for a high and medium speed limit road 

locations to allow the drivers more space to recover from a driving error. Moreover, policies 

concerning enforcement for reducing traffic violations have the potential to reduce head-on 

crashes. Third, in terms of longer survival probability, the important factors are old driver, front-

to-rear crash and crashes during off peak period. Fourth, elasticity estimates of EMS response time 

in Table 5 emphasize the importance of early EMS response. Finally, the elasticity analysis assists 

in providing a clear picture of attribute impact on driver time-to-death variables. The elasticity 

analysis conducted provides an illustration of how the proposed model can be applied to determine 

the critical factors contributing to reducing the survival time. 

  

6. CONCLUSIONS 

 

In the United States, safety researchers have focused on examining fatal crashes (involving at least 

one fatally injured vehicle occupant) by using Fatality Analysis Reporting System (FARS) dataset. 

FARS database compiles crashes if at least one person involved in the crash dies within thirty 

consecutive days from the time of crash along with the exact timeline of the fatal occurrence. 

Previous studies using FARS dataset offer many useful insights on what factors affect crash related 

fatality, particularly in the context of fatal vs. non-fatal injury categorization. However, there is 

one aspect of fatal crashes that has received scarce attention in the traditional safety analysis. The 

studies that dichotomize crashes into fatal versus non-fatal groups assume that all fatal crashes in 

the FARS dataset are similar. Keeping all else same, a fatal crash that results in an immediate 

fatality is clearly much more severe than another crash that leads to fatality after several days. 

Research attempts to discern such differences are useful in determining what factors affect the time 

between crash occurrence and time of death so that countermeasures can be implemented to 

improve safety situation and to reduce crash related fatalities. 

To that extent, the current research makes a three-fold contribution to the literature on 

vehicle occupant injury severity analysis. First, our study is the first attempt to analyze the fatal 

injury from a new perspective and examine fatality as a continuous spectrum based on survival 

time ranging from dying within thirty days of crash to dying instantly. For the empirical analysis, 

the fatality timeline information obtained through FARS was categorized as an ordered variable 

ranging from death in thirty days to instantaneous death in seven categories as follows: died 

between 6th-30 days of crash, died between 2nd-5 days of crash, died between 7th-24 hours of 

crash, died between 1st-6 hours of crash, died between 31st-60 minutes of crash, died between 1st-

30 minutes of crash and died instantly. Second, we estimated two-equation model that comprises 

of regression for EMS response time and ordered outcome model with residuals from the EMS 

model to correct for endogeneity bias on the effect of exogenous factors on the timeline of death. 

In doing so, the correction for endogeneity bias was pinned down in the ordered outcome models 

by employing a two-stage residual inclusion (2SRI) approach. In the research effort, we estimated 

the following three ordered outcome models with endogenous treatment: 1) OL with 2SRI 

treatment, 2) GOL with 2SRI treatment and 3) MGOL model with 2SRI treatment while employing 
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a comprehensive set of exogenous variables (driver characteristics, vehicle characteristics, 

roadway design and operational attributes, environmental factors, crash characteristics and 

situational variables). The comparison exercise highlighted the superiority of the MGOL model 

with 2SRI treatment on the sample in terms of data fit compared to the other ordered outcome 

models in the current study context.  

From the empirical analysis we found that, the factors that contributed to an increase in the 

likelihood of early death include: alcohol impairment, previous record of other harmful motor 

vehicle convictions, medium and higher speed limit, presence of stop sign, presence of other traffic 

control device, cloudy weather, head-on crashes, collision at non-intersection locations, driver 

ejection, presence of more passengers and longer EMS response time. The factors that contributed 

to a decrease in the likelihood of early death include: young driver, previous record of license 

suspension and revocation, crashes during off-peak and evening peak periods and front-to-rear 

crashes. In our research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated. Moreover, we found that after controlling for endogeneity, the coefficient 

on the logarithm of EMS response time was intuitive and statistically significant indicating that 

EMS response time is correlated with unobserved determinants generating endogeneity in the 

outcome model of the time to death of drivers.  

In our research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated. The elasticity effects indicated that there were considerable differences in 

the elasticity effects across different fatal crash categories, suggesting that fatality is not a single 

state but rather is made up of multiple discrete states from dying instantly to dying within thirty 

days of crash. The most significant variables in terms of lower survival probability for drivers were 

crashes on high speed limit roads, crashes on medium speed limit roads and head-on crashes. In 

terms of longer survival probability, the important factors were old driver, front-to-rear crash and 

crashes during off-peak period. Moreover, the elasticity analysis assisted in providing a clear 

picture of attribute impact on driver time-to-death variables. 

The study is not without limitations. In our research effort, we categorized the spectrum of 

fatal crashes in seven refined categories of fatalities ranging from fatality after thirty days to instant 

death. However, some of the earlier studies (Trunkey, 1983) argued that the distribution of survival 

times after traffic crash is “trimodal”. There are also studies (Clark et al., 2012) that contradict the 

trimodal distribution of survival time after crash. Thus, it will be an interesting exercise to explore 

the impact of the fatality spectrum discretization in examining the impact of exogenous variable 

within the MGOL model structure. In our analysis, we adopted an ordinary least squares based 

instrumentation approach for EMS time. However, it might be useful to consider alternative 

instrumentation approaches such as a duration model based instrumentation in future efforts. 

Finally, we do recognize that many relevant variables on medical treatment offered to injured 

drivers is unavailable in FARS data. Efforts to augment FARS data with such detail will 

substantially enhance empirical findings from the model estimated in our research.  

 

ACKNOWLEDGEMENTS  

 

The corresponding author would like to acknowledge financial support from Natural Sciences and 

Engineering Research Council (NSERC) of Canada under the Discovery Grants program for 

undertaking the research. The authors would also like to acknowledge the contribution of 

Tonjanika Robinson who contributed through a preliminary literature review effort for the 

research. 



16 

 

REFERENCES 

 

Al-Ghamdi, A., 1999. Injury Severity and Duration of Hospital Stay for Urban Road Accidents in 

Riyadh. Transportation Research Record 1665, 125-132. 

Al-Ghamdi, A.S., 2002. Using Logistic Regression to Estimate the Influence of Accident Factors 

on Accident Severity. Accident Analysis and Prevention 34 (6), 729-741. 

Arditi, D., Lee, D.E., Polat, G., 2007. Fatal Accidents in Nighttime vs. Daytime Highway 

Construction Work Zones. Journal of Safety Research 38 (4), 399-405. 

Baker, T.K., Falb, T., Voas, R., Lacey, J., 2003. Older Women Drivers: Fatal Crashes in Good 

Conditions. Journal of Safety Research 34 (4), 399-405. 

Bédard, M., Guyatt, G.H., Stones, M.J., Hirdes, J.P., 2002. The Independent Contribution of 

Driver, Crash, and Vehicle Characteristics to Driver Fatalities. Accident Analysis and 

Prevention 34 (6), 717-727. 

Bhat, C.R., 2001. Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed 

Multinomial Logit Model. Transportation Research Part B 35 (7), 677-693. 

Braver, E.R., 2003. Race, Hispanic Origin, and Socioeconomic Status in Relation to Motor Vehicle 

Occupant Death Rates and Risk Factors among Adults. Accident Analysis and Prevention 35 

(3), 295-309. 

Brodsky, H., 1992. Delay in Ambulance Dispatch to Road Accidents. American Journal of Public 

Health 82 (6), 873-875. 

Brown, L.H., Khanna, A., Hunt, R.C., 2000. Rural vs Urban Motor Vehicle Crash Death Rates: 20 

Years of FARS Data. Prehospital Emergency Care 4 (1), 7-13. 

Campos-Outcalt, D., Bay, C., Dellapena, A., Cota, M.K., 2003. Motor Vehicle Crash Fatalities by 

Race/Ethnicity in Arizona, 1990-96. Injury Prevention 9 (3), 251-256. 

Chamberlain, G., 1980. Analysis of Covariance with Qualitative Data. The Review of Economic 

Studies 47 (1), 225-238. 

Chen, L., Baker, S.P., Braver, E.R., Li, G., 2000. Carrying Passengers as a Risk Factor for Crashes 

Fatal to 16- and 17-Year-Old Drivers. Journal of American Medical Association 283 (12), 1578-

1582. 

Chipman, M.L., 2004. Side Impact Crashes - Factors Affecting Incidence and Severity: Review of 

the Literature. Traffic Injury Prevention 5 (1), 67-75. 

Clark, D.E., Cushing, B.M., 2002. Predicted Effect of Automatic Crash Notification on Traffic 

Mortality. Accident Analysis and Prevention 34 (4), 507-513. 

Clark, D.E., Qian, J., Sihler, K.C., Hallagan, L.D., Betensky, R.A., 2012. The Distribution of 

Survival Times after Injury. World Journal of Surgery 36 (7), 1562-1570. 

Clark, D.E., Winchell, R.J., Betensky, R.A., 2013. Estimating the Effect of Emergency Care on 

Early Survival after Traffic Crashes. Accident Analysis and Prevention 60, 141-147. 

Eluru, N., 2013. Evaluating Alternate Discrete Choice Frameworks for Modeling Ordinal Discrete 

Variables. Accident Analysis and Prevention 55, 1-11. 



17 

 

Eluru, N., Bhat, C.R., 2007. A Joint Econometric Analysis of Seat Belt Use and Crash-Related 

Injury Severity. Accident Analysis and Prevention 39 (5), 1037-1049. 

Eluru, N., Bhat, C.R., Hensher, D.A., 2008. A Mixed Generalized Ordered Response Model for 

Examining Pedestrian and Bicyclist Injury Severity Level in Traffic Crashes. Accident Analysis 

and Prevention 40 (3), 1033-1054. 

Elvik, R., 2004. To What Extent can Theory Account for the Findings of Road Safety Evaluation 

Studies?. Accident Analysis and Prevention 36 (5), 841-849. 

Fabbri, A., Marchesini, G., Morselli-Labate, A.M., Rossi, F., Cicognani, A., Dente, M., Iervese, 

T., Ruggeri, S., Mengozzi, U., Vandelli, A., 2002. Positive Blood Alcohol Concentration and 

Road Accidents. A Prospective Study in an Italian Emergency Department. Emergency 

Medicine Journal 19 (3), 210-214. 

Feero, S., Hedges, J.R., Simmons, E., Irwin, L., 1995. Does Out-of-Hospital EMS Time Affect 

Trauma Survival? The American Journal of Emergency Medicine 13 (2), 133-135. 

Fredette, M., Mambu, L.S., Chouinard, A., Bellavance, F., 2008. Safety Impacts due to the 

Incompatibility of SUVs, Minivans, and Pickup Trucks in Two-Vehicle Collisions. Accident 

Analysis and Prevention 40 (6), 1987-1995. 

Gates, J., Dubois, S., Mullen, N., Weaver, B., Bédard, M., 2013. The Influence of Stimulants on 

Truck Driver Crash Responsibility in Fatal Crashes. Forensic Science International 228 (1-3), 

15-20. 

Golias, J.C., Tzivelou, H.S., 1992. Aspects of Road-Accident Death Analyses. Journal of 

Transportation Engineering 118 (2), 299-311. 

Gonzalez, R.P., Cummings, G., Mulekar, M., Rodning, C.B., 2006. Increased Mortality in Rural 

Vehicular Trauma: Identifying Contributing Factors through Data Linkage. Journal of Trauma 

- Injury, Infection and Critical Care 61 (2), 404-409. 

Gonzalez, R.P., Cummings, G.R., Phelan, H.A., Mulekar, M.S., Rodning, C.B., 2009. Does 

Increased Emergency Medical Services Prehospital Time Affect Patient Mortality in Rural 

Motor Vehicle Crashes? A Statewide Analysis. The American Journal of Surgery 197 (1), 30-

34. 

Governors Highway Safety Association (GHSA), 2009. Toward Zero Deaths: Every Life Counts, 

GHSA, Washington, D.C. 

Hanna, C.L., Laflamme, L., Bingham, C.R., 2012. Fatal Crash Involvement of unlicensed Young 

Drivers: County Level Differences According to Material Deprivation and Urbanicity in the 

United States. Accident Analysis and Prevention 45, 291-295. 

Harper, J.S., Marine, W.M., Garrett, C.J., Lezotte, D., Lowenstein, S.R., 2000. Motor Vehicle 

Crash Fatalities: A Comparison of Hispanic and Non-Hispanic Motorists in Colorado. Annals 

of Emergency Medicine 36 (6), 589-596. 

Huang, H., Chin, H.C., Haque, M.M., 2008. Severity of Driver Injury and Vehicle Damage in 

Traffic Crashes at Intersections: A Bayesian Hierarchical Analysis. Accident Analysis and 

Prevention 40 (1), 45-54. 



18 

 

Ju, Y.H., Sohn, S.Y., 2014. Time to Death Analysis of Road Traffic Accidents in Relation to Delta 

V, Drunk Driving, and Restraint Systems. Traffic Injury Prevention 15 (8), 771-777. 

Kim, J.K., Ulfarsson, G.F., Kim, S., Shankar, V.N., 2013. Driver-Injury Severity in Single-Vehicle 

Crashes in California: A Mixed Logit Analysis of Heterogeneity due to Age and Gender. 

Accident Analysis and Prevention 50, 1073-1081. 

Kockelman, K.M., Kweon, Y.J., 2002. Driver Injury Severity: An Application of Ordered Probit 

Models. Accident Analysis and Prevention 34 (3), 313-321. 

Lambert-Bélanger, A., Dubois, S., Weaver, B., Mullen, N., Bédard, M., 2012. Aggressive Driving 

Behaviour in Young Drivers (Aged 16 through 25) Involved in Fatal Crashes. Journal of Safety 

Research 43 (5-6), 333-338. 

Lyman, S., Ferguson, S.A., Braver, E.R., Williams, A.F., 2002. Older Driver Involvements in 

Police Reported Crashes and Fatal Crashes: Trends and Projections. Injury Prevention 8 (2), 

116-120. 

Marson, A.C., Thomson, J.C., 2001. The Influence of Prehospital Trauma Care on Motor Vehicle 

Crash Mortality. Journal of Trauma Injury - Infection and Critical Care 50 (5), 917-921. 

Meng, Q., Weng, J., 2013. Uncertainty Analysis of Accident Notification Time and Emergency 

Medical Service Response Time in Work Zone Traffic Accidents. Traffic Injury Prevention 14 

(2), 150-158. 

Mooradian, J., Ivan, J.N., Ravishanker, N., Hu, S., 2013. Analysis of Driver and Passenger Crash 

Injury Severity Using Partial Proportional Odds Models. Accident Analysis and Prevention 58, 

53-58. 

National Highway Traffic Safety Administration (NHTSA), 2012. Traffic Safety Facts: 2010 

Motor Vehicle Crashes Overview, NHTSA, Washington, D.C. 

O'Neill, B., 2009. Preventing Passenger Vehicle Occupant Injuries by Vehicle Design- A 

Historical Perspective from IIHS. Traffic Injury Prevention 10 (2), 113-126. 

Palanca, S., Taylor, D.M., Bailey, M., Cameron, P.A., 2003. Mechanisms of Motor Vehicle 

Accidents that Predict Major Injury. Emergency Medicine 15 (5-6), 423-428. 

Prentkovskis, O., Sokolovskij, E., Bartulis, V., 2010. Investigating Traffic Accidents: A Collision 

of Two Motor Vehicles. Transport 25 (2), 105-115. 

Retting, R.A., Weinstein, H.B., Solomon, M.G., 2003. Analysis of Motor-Vehicle Crashes at Stop 

Signs in Four U.S. Cities. Journal of Safety Research 34 (5), 485-489. 

Romano, E., Voas, R., Tippetts, S., 2006. Stop Sign Violations: The Role of Race and Ethnicity 

on Fatal Crashes. Journal of Safety Research 37 (1), 1-7. 

Ryb, G.E., Dischinger, P.C., McGwin, G., Griffin, R.L., 2011. Crash-Related Mortality and Model 

Year: Are Newer Vehicles Safer? Paper presented at the Annals of Advances in Automotive 

Medicine, 55, 113-121. 

Sánchez-Mangas, R., García-Ferrrer, A., De Juan, A., Arroyo, A.M., 2010. The Probability of 

Death in Road Traffic Accidents. How Important is a Quick Medical Response? Accident 

Analysis and Prevention 42 (4), 1048-1056. 



19 

 

Siskind, V., Steinhardt, D., Sheehan, M., O'Connor, T., Hanks, H., 2011. Risk Factors for Fatal 

Crashes in Rural Australia. Accident Analysis and Prevention 43 (3), 1082-1088. 

Sivak, M., Schoettle, B., Rupp, J., 2010. Survival in Fatal Road Crashes: Body Mass Index, 

Gender, and Safety Belt Use. Traffic Injury Prevention 11 (1), 66-68. 

Sobhani, A., Young, W., Logan, D., Bahrololoom, S., 2011. A Kinetic Energy Model of Two-

Vehicle Crash Injury Severity. Accident Analysis and Prevention 43 (3), 741-754. 

Soderstrom, C.A., Ballesteros, M.F., Dischinger, P.C., Kerns, T.J., Flint, R.D., Smith, G.S., 2001. 

Alcohol/Drug Abuse, Driving Convictions, and Risk-Taking Dispositions among Trauma 

Center Patients. Accident Analysis and Prevention 33 (6), 771-782. 

Srinivasan, K.K., 2002. Injury Severity Analysis with Variable and Correlated Thresholds: 

Ordered Mixed Logit Formulation, Transportation Research Record 1784, 132-142. 

Stübig, T., Petri, M., Zeckey, C., Brand, S., Müller, C., Otte, D., Krettek, C., Haasper, C., 2012. 

Alcohol Intoxication in Road Traffic Accidents Leads to Higher Impact Speed Difference, 

Higher ISS and MAIS, and Higher Preclinical Mortality. Alcohol 46 (7), 681-686. 

Tay, R., Choi, J., Kattan, L., Khan, A., 2011. A Multinomial Logit Model of Pedestrian–Vehicle 

Crash Severity. International Journal of Sustainable Transportation 5 (4), 233-249. 

Terza, J.V., Basu, A., Rathouz, P.J., 2008. Two-Stage Residual Inclusion Estimation: Addressing 

Endogeneity in Health Econometric Modeling. Journal of Health Economics 27 (3), 531-543. 

Thompson, J.P., Baldock, M.R.J., Mathias, J.L., Wundersitz, L.N., 2013. An Examination of the 

Environmental, Driver and Vehicle Factors Associated with the Serious and Fatal Crashes of 

Older Rural Drivers. Accident Analysis and Prevention 50, 768-775. 

Tohira, H., Jacobs, I., Mountain, D., Gibson, N., Yeo, A., 2012. Differences in Risk Factors 

between Early and Late Trauma Death after Road Traffic Accidents, 2012 IRCOBI Conference 

Proceedings - International Research Council on the Biomechanics of Injury, 1-9. 

Travis, L.L., Clark, D.E., Haskins, A.E., Kilch, J.A., 2012. Mortality in Rural Locations after 

Severe Injuries from Motor Vehicle Crashes. Journal of Safety Research 43 (5-6), 375-380. 

Trunkey DD., 1983. Trauma. Scientific American 249 (2), 28–35. 

Valent, F., Schiava, F., Savonitto, C., Gallo, T., Brusaferro, S., Barbone, F., 2002. Risk Factors 

for Fatal Road Traffic Accidents in Udine, Italy. Accident Analysis and Prevention 34 (1), 71-

84. 

Viano, D.C., Parenteau, C.S., 2010. Severe-to-Fatal Injury Risks in Crashes with Two Front-Seat 

Occupants by Seat Belt Use. Traffic Injury Prevention 11 (3), 294-299. 

Weninger, P., Hertz, H., 2007. Factors Influencing the Injury Pattern and Injury Severity after 

High Speed Motor Vehicle Accident-A Retrospective Study. Resuscitation 75 (1), 35-41. 

Yasmin, S., Eluru, N., 2013. Evaluating Alternate Discrete Outcome Frameworks for Modeling 

Crash Injury Severity. Accident Analysis and Prevention 59, 506-521. 

Zador, P.L., Krawchuk, S.A., Voas, R.B., 2000. Alcohol-Related Relative Risk of Driver Fatalities 

and Driver Involvement in Fatal Crashes in Relation to Driver Age and Gender: An Update 

Using 1996 Data. Journal of Studies on Alcohol 61 (3), 387-395. 



20 

 

Zeckey, C., Dannecker, S., Hildebrand, F., Mommsen, P., Scherer, R., Probst, C., Krettek, C., 

Frink, M., 2011. Alcohol and Multiple Trauma-Is There an Influence on the Outcome?. Alcohol 

45 (3), 245-251. 

Zhang, C., Ivan, J.N., 2005. Effects of Geometric Characteristics on Head-On Crash Incidence on 

Two-Lane Roads in Connecticut, Transportation Research Record 1908, 159-164. 

Zhang, X., Yao, H., Hu, G., Cui, M., Gu, Y., Xiang, H., 2013. Basic Characteristics of Road Traffic 

Deaths in China. Iranian Journal of Public Health 42 (1), 7-15. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

 

LIST OF TABLES 

 

TABLE 1 Distribution of Fatal Injury Severity Categories 

TABLE 2 MGOL Estimates 

TABLE 3 Measures of Fit in Estimation Sample 

TABLE 4 MGOL Estimates 

TABLE 5 Elasticity Effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

TABLE 1 Distribution of Fatal Injury Severity Categories 

Fatal Crash Categories Frequency Percentage 

Died between 6th to 30 days of crash 302 5.9% 

Died between 2nd to 5 days of crash 270 5.3% 

Died between 7th to 24 hours of crash 233 4.6% 

Died between 2nd to 6 hours of crash 1175 23.0% 

Died between 31st to 60 minutes of crash 824 16.1% 

Died between 1st to 30 minutes of crash  1086 21.3% 

Died instantly 1212 23.8% 

Total 5102 100.0% 
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TABLE 2 Crash Database Sample Statistics  

Categorical Explanatory Variables 
Sample Share 

Frequency Percentage 

Driver Characteristics 

 Driver age  

  Age 24 & less 1144 22.423 

  Age 25-64 2915 57.134 

  Age 65 & above 1043 20.443 

 Under the influence of alcohol 1778 34.849 

Vehicle Characteristics 

 Vehicle age   

  Vehicle age<11 years 2822 55.312 

  Vehicle age≥11 years 2280 44.688 

Roadway Design and Operational Attributes 

 Speed limit  

  Speed limit less than 26 mph 261 5.116 

  Speed limit 26 to 50 mph 2059 40.357 

  Speed limit above 50mph 2782 54.528 

 Traffic control device 

  No traffic control, traffic signal and yield sign 4271 83.712 

  Stop sign 401 7.860 

  Other traffic control device 430 8.428 

 Roadway functional class   

  Principal Arterial 1680 32.928 

  Minor Arterial 997 19.541 

  Collector 1208 23.677 

  Local Road 1217 23.853 

 Land use   

  Rural 3206 62.838 

  Urban 1896 37.162 

Environmental Factors 

 Time of day   

  Morning Peak 548 10.741 

  Off-peak 1266 24.814 

  Evening peak 828 16.229 

  Late evening 1311 25.696 

  Late night 1149 22.521 

 Lighting condition 

  Daylight and other lighting condition 2910 57.036 

  Dark-not lighted 1430 28.028 
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 Dark-lighted 762 14.935 

 Weather condition 

  Dry 3601 70.580 

  Rain 422 8.271 

  Snowy 210 4.116 

  Cloudy 850 16.660 

  Other weather condition 19 0.372 

Crash Characteristics 

 Manner of collision  

  Front to rear 124 2.430 

  Head-on  897 17.581 

  Other type of collision 4081 79.988 

 Collision location 

  Non-Intersection   75.931 75.931 

  Intersection 15.759 15.759 

  Other Location 8.310 8.310 

Situational Variables 

 Driver ejection   

  Ejected 1197 23.461 

  Not ejected 3905 76.539 

Ordinal/Continuous Explanatory Variables Mean 

 Previous Recorded suspensions and revocations 0.444 

 Previous record of other harmful motor vehicle convictions 0.323 

 Number of passengers 0.400 

 Logarithm of EMS response time (in minute) 2.473 
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TABLE 3 Measures of Fit in Estimation Sample 

Summary Statistic OL GOL MGOL 

Log-likelihood at zero -9928.0 -9928.0 -9928.0 

Log-likelihood at sample shares -9016.3 -9016.3 -9016.3 

Number of observations 5102 5102 5102 

Summary Statistic Without 2SRI Treatment 

Log-likelihood at convergence -8844.8 -8794.9 -8793.7 

Number of parameters 18 28 30 

Summary Statistic With 2SRI Treatment 

Log-likelihood at convergence -8839.8 -8790.8 -8787.4 

Number of parameters 19 29 31 

Log-likelihood (LR) test LR Test Values 

OL without 2SRI/OL with 2SRI  9.9 (1 degree of freedom) 

GOL without 2SRI/GOL with 2SRI  8.2 (1 degree of freedom) 

MGOL without 2SRI/MGOL with 2SRI  12.6 (1 degree of freedom) 

OL with 2SRI/GOL with 2SRI 98.1 (10 degrees of freedom) 

OL with 2SRI/MGOL with 2SRI 104.8 (12 degrees of freedom) 

GOL with 2SRI/MGOL with 2SRI 6.8 (2 degrees of freedom) 
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TABLE 4 MGOL Estimates 

Variables Latent Propensity 𝝉𝟐 𝝉𝟑 𝝉𝟒 𝝉𝟓 𝝉𝟔 

Constant -1.712(-5.229) -0.441(-6.101) -0.854(-13.236) 0.141(2.296) -0.104(-1.386) 0.069(1.915) 

Driver Characteristics 

 Driver age (Base: Age 25-64) 

  Age 24 & less -0.147(-2.207)* − − − − − 

  Age 65 & above -1.015(-10.966) − − -0.281(-4.334) -0.182(-2.071) − 

 Under the influence of alcohol 0.488(3.488) 0.434(3.261) − − − − 

 
Previous Recorded suspensions and 

revocations 
-0.068(-3.264) − − − − − 

 
Previous record of other harmful motor 

vehicle convictions 
0.104(2.598) − − − − − 

 SD 0.208(3.596) − − − − − 

Vehicle Characteristics 

 Vehicle age (Base: Vehicle age<11 years)   

  Vehicle age≥11 years − − − − -0.157(-2.689) − 

Roadway Design and Operational Attributes 

 Speed limit (Base: Speed limit<26 mph) 

  Speed limit 26 to 50 mph 0.251(2.117) − − − − − 

  Speed limit above 50mph 0.359(2.981) − − − − − 

  SD 0.447(2.707) − − − − − 

 Traffic control device (Base: No traffic control, traffic signal and yield sign) 

  Stop sign 0.223(1.975) − − − − − 

  Other traffic control device 0.171(2.148) − − − − − 

Environmental Factors 

 Time of day (Base: Morning Peak, Late evening and Late Night)    

  Off peak  -0.218(-3.157) − − − − -0.161(-2.323) 

  Evening peak -0.151(-2.012) − − − − − 

 Weather condition (Base: Dry, Rain, Snowy and Other weather condition) 

  Cloudy 0.467(2.987) 0.276(1.872) − − − − 

Crash Characteristics 

 Manner of collision (Base: Other type of collision) 

  Front to rear -0.317(-1.765) − − − − − 
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  Head-on 0.661(5.312) − − 0.261(3.781) − − 

 Collision location (Base: Intersection and Other location) 

  Non-intersection 0.362(3.741) − − 0.217(3.346) -0.234(-3.168) − 

Situational Variables 

 Driver ejection (Base: Not ejected)       

  Ejected  0.267(3.651) − − − 0.145(1.963) − 

 Number of passengers 0.159(4.874) − − − − − 

 EMS response time       

  
Logarithm of EMS response time (in 

minutes) 
0.247(1.993)      

  

Residual from regression of 

Logarithm of EMS arrival time (in 

minutes) on morning peak, late 

night, dark-not lighted, rain, snowy, 

rural, principle arterial and minor 

arterial 

-0.363(-2.929) − − − − − 

 𝜏2= Threshold between 1st-5 days/ 7th-24 hours; 𝜏3= Threshold between  7th-24 hours/ 1st-6 hours; 𝜏4 = Threshold between  1st-6 hours/ 31st-60 minutes; 𝜏5 = Threshold between  

31st-60 minutes/ 1st-30 minutes; 𝜏6 = Threshold between  1st-30 minutes/ Died Instantly 

*t-stats are presented in parenthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

TABLE 5 Elasticity Effects 

Variables 
Died between 6-

30 days 

Died between 2-5 

days 

Died between 7-24 

hours 

Died between 2-6 

hours 

Died between 31-

60 minutes 

Died between 1-

30 minutes 
Died instantly 

Driver Characteristics  

 Driver age (Base: Age 25-64)  

  Age 24 & less 13.694 11.328 9.375 6.150 0.648 -4.202 -10.384 

  Age 65 & above 108.781 93.747 74.488 2.099 -18.729 -17.964 -35.615 

 Under the influence of alcohol -39.798 22.427 -7.732 -5.153 -0.658 3.421 8.611 

 
Previous Recorded suspensions and 

revocations 6.270 5.246 4.367 2.871 0.312 -1.950 -4.823 

 
Previous record of other harmful 

motor vehicle convictions -6.784 -6.263 -5.725 -4.674 -2.074 1.511 8.782 

Vehicle Characteristics  

 Vehicle age (Base: Vehicle age<11 years)    

  Vehicle age≥11 years 0.000 0.000 0.000 0.000 -15.654 3.016 7.977 

Roadway Design and Operational Attributes  

 Speed limit (Base: Speed limit<26 mph)  

  Speed limit 26 to 50 mph -22.181 -18.747 -15.721 -10.576 -1.590 6.632 18.132 

  Speed limit above 50mph -25.631 -23.452 -21.341 -16.467 -5.703 7.403 28.948 

 Traffic control device (Base: No traffic control, traffic signal and yield sign)  

  Stop sign -18.668 -15.959 -13.637 -9.645 -2.112 5.457 16.739 

  Other traffic control device -14.440 -12.444 -10.636 -7.420 -1.487 4.369 12.715 

Environmental Factor  

 Time of day (Base: Morning Peak, Late evening and Late Night)      

  Off peak  20.164 17.115 14.241 9.234 0.793 -18.852 -4.193 

  Evening peak 14.059 11.726 9.714 6.322 0.590 -4.386 -10.591 

 Weather condition (Base: Dry, Rain, Snowy and Other weather condition)  

  Cloudy -36.654 1.822 -14.118 -9.567 -1.671 5.906 16.468 

Crash Characteristics  

 Manner of collision (Base: Other type of collision)  

  Front to rear 31.998 25.907 20.893 12.738 -0.027 -9.992 -21.155 

  Head-on -49.427 -44.114 -39.224 4.763 -1.926 7.301 19.919 

 Collision location (Base: Intersection and Other location)  

  Non-intersection -34.151 -29.006 -24.066 12.236 -24.944 7.878 17.758 
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Situational Variables      

 Driver ejection (Base: Not ejected)        

  Ejected  -22.368 -19.547 -16.760 -11.686 12.997 4.252 11.816 

 Number of passenger -13.339 -11.499 -9.842 -6.893 -1.428 4.007 11.851 

 EMS response time -2.410 -2.001 -1.706 -1.157 -0.227 0.690 2.033 
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APPENDIX A Linear Regression Estimates  

Variables Coefficient t-stat 

Constant 2.190 80.670 

Roadway functional class (Base: Collector and Local road 

Principal Arterial -0.074 -2.709 

Minor Arterial -0.118 -3.699 

Land use (Base: Urban)   

Rural 0.363 14.183 

Time of day (Base: Off-peak, Evening peak and Late evening) 

Morning Peak 0.070 1.794 

Late night 0.213 6.877 

Lighting condition (Base: Daylight and other lighting condition and Dark-lighted) 

Dark-not lighted 0.120 4.161 

Weather condition (Base: Dry, Cloudy and Other weather condition) 

Rain 0.088 2.052 

Snowy 0.145 2.419 

 


