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ABSTRACT 1 

An empirical assessment is presented on the transferability of tour-based time-of-day choice 2 

models across different counties in the San Francisco Bay Area. Transferability is assessed using 3 

two different approaches: (1) application-based approach, and (2) estimation-based approach. 4 

The former approach tests the transferability of a model as a whole while the latter approach 5 

allows the analyst to test which specific parameters in the model are transferable. In addition, the 6 

hypothesis that pooling data from multiple geographical contexts helps in developing better 7 

transferable models than those estimated from a single context was tested. The estimation-based 8 

approach yields encouraging results in favor of time-of-day choice model transferability, with a 9 

majority of parameter estimates in a pooled model found to be transferrable. Pooling data from 10 

multiple geographical contexts appears to help in developing better transferable models. 11 

However, attention is needed in selecting the geographical contexts to pool data from. 12 

Specifically, the pooled data should exhibit same demographic characteristics and travel level-of-13 

service conditions as in the application context.  14 
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1 INTRODUCTION 1 

Spatial transferability of travel forecasting models can help in significant cost and time savings 2 

for transport planning agencies that cannot afford extensive data collection and model 3 

development. This issue is particularly relevant for tour-based/activity-based models (ABMs) 4 

whose development typically involves significant data inputs and long production times. 5 

However, only a handful of recent studies document transferability assessments of ABM model 6 

components [(1-4)]. Empirical assessments of tour-based time-of-day (TOD) choice models are 7 

even fewer [(3-5)].  8 

TOD choice models are used to model individual-level travel timing choices for 9 

forecasting aggregate-level temporal variations in traffic volumes. Sound TOD choice models 10 

are paramount to travel forecasting models, because evaluations of several travel-demand 11 

management strategies rely on accurate predictions of the temporal variation in travel volumes. 12 

Therefore, several studies proposed appropriate methods to model individuals’ travel timing 13 

within a tour-based approach [(6-10)]. Besides, recent studies [(3,4)] suggest that time-of-day 14 

choice models may be better transferable than other components of ABMs such as mode choice 15 

and location choice models. This is perhaps because individuals’ time-of-day choices tend to be 16 

much less connected to land-use characteristics, spatial structure, and quality attributes of travel 17 

modes that tend to vary across geographical contexts but not easy to capture in empirical models. 18 

Therefore, transferability of time-of-day choice models is a fruitful avenue for research – for 19 

accumulating empirical evidence on what aspects of these models are transferable and for 20 

understanding how best to transfer such models. 21 

 22 

1.1 Transferability Assessment Techniques 23 

A variety of different approaches and metrics have been used in the literature to assess 24 

transferability of travel model parameters. Bowman et al. (3) classify the available transferability 25 

assessment approaches into two broad categories: (a) application-based approach, and (b) 26 

estimation-based approach. In the former approach, the model parameters are estimated using 27 

data from one region (the base context) and “applied” to data in other region (the application 28 

context) to assess how well the model predicts in the other region. This approach generally tests 29 

the transferability of models as a whole, without allowing an examination of which specific 30 

parameters are transferable. In the latter approach (also called joint-context estimation; see (11, 31 

12)), data from both estimation and application contexts is combined to estimate a single model, 32 

while recognizing potential differences between the two contexts by estimating “difference” 33 

parameters. Simple t-tests on these difference parameters shed light on whether the parameter 34 

estimates are different between the two contexts. A particular advantage of this approach is that 35 

one can test if each (and every) parameter in a model is transferable (3).  36 

  The application-based approach has been the predominantly used approach, with most 37 

empirical evidence suggesting the difficulty of model transferability across geographical 38 

contexts. However, it is possible that the approaches used to assess model transferability may 39 

influence transferability results. For example, small sample sizes, if used in model estimation in 40 

the application-based approach, can easily confound the model transferability results toward less 41 

transferable. The estimation-based approach, on the other hand, helps alleviate such sample size 42 

issues (to an extent) by estimating common parameters where the data variability is small within 43 

a single context. Besides, many transferability assessment metrics are based on comparing the 44 

log-likelihood measures and predictions (in the application context) from the models estimated 45 

separately in the base and application contexts. Although many parameters may not be 46 
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statistically different between the base- and application-context models, small numerical 1 

differences for a large number of parameters may lead to non-negligibly different log-likelihoods 2 

and predictions. In view of these issues, it would be useful to investigate the differences between 3 

the approaches on model transferability results. 4 

 5 

1.2 Development of Better Transferable Models  6 

 As discussed earlier, joint-context estimation approach uses data from both the base and 7 

application contexts. An extension of the joint-context estimation approach is to pool data from 8 

multiple contexts, as opposed to only two contexts. In situations where the variation in important 9 

socio-demographic, land-use, or level-of-service variables is insufficient in either contexts, 10 

pooling data from multiple contexts can potentially help in achieving sufficient variation for 11 

better model specification and estimation. Several studies (13-15) allude to this strategy for 12 

developing better transferable models. Therefore, it would be useful to accumulate empirical 13 

evidence on the extent to which and the reasons for which pooling data helps in enhancing model 14 

transferability. It is also important to investigate if the improvement in transferability after 15 

pooling data is only due to sample size increase, or if the specific geographical contexts from 16 

which data is pooled have a bearing. If the geographical context has influence, it is useful to 17 

understand where to pool data from.    18 

 19 

1.3 Current Research 20 

The overarching aim of this paper is to investigate the spatial transferability of tour-based time-21 

of-day choice models. To this end, an empirical assessment is conducted to assess the 22 

transferability of a commute tour start and end time choice model among different counties in the 23 

San Francisco Bay area. The transferability assessments aim to investigate what aspects of time-24 

of-day choice models are transferable and what aspects are less transferable. In addition, the 25 

results from different transferability assessment approaches (i.e., application-based and 26 

estimation-based) are compared and contrasted. Furthermore, extensive explorations are 27 

performed to investigate the extent to which and the reasons why pooling data from multiple 28 

contexts helps in achieving better transferable models. These explorations resulted in useful 29 

guidelines on where to borrow data from, for developing transferable time-of-day choice models. 30 

The next section provides an overview of the data and geographical contexts considered 31 

in this study. Section 3 describes the model structure and the approach used to assess 32 

transferability. Section 4 presents empirical results. Section 5 concludes the paper. 33 

 34 

2 DATA  35 

The primary data source used for the analysis is the 2000 San Francisco Bay Area Travel Survey 36 

(BATS), an activity-based travel survey that collected information on all in-home and out-of-37 

home activities over a two-day period from over 15,000 households in the San Francisco Bay 38 

Area. The geographical regions considered in this paper are different counties in the San 39 

Francisco Bay Area. For a majority of transferability assessments, we focus on the following six 40 

out of the nine counties in the Bay area: Alameda (AL), Contra Costa (CC), Santa Clara (SC), 41 

San Francisco (SF), San Mateo (SM), and Sonoma (SN). This helped in keeping the model 42 

estimation efforts manageable. Besides, the sample sizes from the other three counties were too 43 

small. Table 1 presents the descriptive information on the data in each of the six counties. It can 44 

be observed that the employed adults in Santa Clara are different from those in most other 45 

counties. For example, there appear to be greater proportions of full time workers, those with 46 
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flexible work schedules, and with higher income levels in Santa Clara than in other counties. The 1 

closest County to Santa Clara, in terms of overall characteristics considered in this table, is San 2 

Mateo. Among the other counties, the employed adults from Contra Costa appear to be similar to 3 

those from Alameda County especially in their employment characteristics - employment type, 4 

status, and schedule flexibility. In the context of land use characteristics and household 5 

structures, San Francisco County appears to be different from the other counties in the Bay Area. 6 

Specifically, greater proportions of single person households and employed adults living in urban 7 

areas are observed in San Francisco County. Although descriptive statistics cannot shed full light 8 

on model transferability, the noted differences or similarities may have a bearing. Finally, note 9 

that the sample sizes for the San Francisco and Sonoma Counties are relatively small; caution is 10 

warranted in interpreting model transferability results for these Counties. 11 

 12 

3 METHODOLOGY 13 

The multinomial logit (MNL) structure was used for the tour-based time-of-day choice model. 14 

To define the choice alternatives, individuals’ work tour start and end times were categorized 15 

into discrete, half-hour intervals in a day. Next, based on the observed tour start- and end-times 16 

in the data set, some of the consecutive half-hour intervals were aggregated into larger time 17 

intervals. As a result, a total of 25 different time-slots were used for tour start time choice and 21 18 

time-slots were used for tour end time periods. Since the models are for predicting the joint 19 

choice of tour start-and end-times, the tour start time slots were combined with those of tour end 20 

time slots, resulting in a total 386 feasible alternatives, each representing a combination of tour 21 

start and tour end time intervals. 22 

 Following (10), the utility functions of the MNL models comprise three parts, one for 23 

start-time, one for end-time, and the other for duration:   24 

                                      ( , ) ( ) ( ) ( -  )s e dur

s e e sU s e U t U t U t t= + +                                            (1)             25 

In the above equation, ( , )U s e  is the joint utility of starting the tour in time slot s and ending in 26 

time slot e, with st and et  as the mid points of the time slots (measured from 3:00am as the 27 

beginning of the day), ( )s

sU t is start-time function, ( )e

eU t is end-time function, and ( -  )dur

e sU t t  28 

is duration function.   29 

 30 

Start-time function, ( ) ( ) (travel time) (travel cost) ln(# half-hour periods in slot s)s s

s r s thw hw chw hw

r

U t x f t β β= + + +∑  31 

End-time function, ( ) ( ) (travel time) (travel cost) ln(# half-hour periods in slot e)e e

e r e twh wh cwh wh

r

U t x f t β β= + + +∑  32 

Duration function, 2 3

1 2 3( -  ) ( -  ) ( -  ) ( -  ) .......... ( -  )dur dur dur dur dur d

e s e s e s e s d e sU t t t t t t t t t tβ β β β= + +                        (2) 33 

In the start- and end-time functions of the above equations, r is the number of demographic 34 

explanatory variables rx  used in the model, including constants; and ( )s

sf t  and ( )e

ef t  are 35 

specified as trigonometric cyclic functions of st and et , respectively, to ensure that the function 36 

value at a time period “t” is same as that at “t+24” (same time next day). 37 

     
1 2 3

2 2.2 3.2 .2
( ) sin sin sin ........... sin

24 24 24 24

s s s s ss s s s
s n

t t t n t
f t

π π π π
β β β β       = + + +       

       
    38 
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1 2 3

2 2.2 3.2 .2
( ) sin sin sin ........... sin

24 24 24 24

e e e e ee e e e
e d

t t t d t
f t

π π π π
β β β β       = + + +       

       
      (3) 1 

In the above two equations, n and d are the number of terms in the start- and end-time cyclic 2 

functions, determined using statistical tests and the reasonableness of resulting temporal profiles 3 

of the functions. Note that the individual coefficients in these cyclic functions cannot be 4 

interpreted meaningfully. For interpreting the effect of a variable (say female with kids), all the 5 

corresponding coefficients in the cyclic function should be used to plot the utility profiles as a 6 

function of time-of-day.  7 

  The start- and end-time functions in the utility specification include time-varying travel 8 

conditions; i.e., travel times and travel costs for each of time-of-day alternative in the model. 9 

One potential source of this data is the travel time and cost skims from the regional travel model. 10 

However such skims were available only for very broad time periods in the day making it 11 

difficult to represent the variation in travel conditions within each broad time period. Therefore, 12 

following (16), an auxiliary travel duration regression model was developed to impute time-13 

varying travel times using reported travel durations in the data. The regression model specifies 14 

the ratio of reported travel duration for a trip and the free-flow time (obtained from the travel 15 

time skims) between the origin-destination pair of the corresponding trip as the dependent 16 

variable, and zonal land-use characteristics, trip distance, and time-of-day as independent 17 

variables in the model. The model is formulated as below: 18 

                  
[Travel Duration]

 intercept exp[sin ( )] exp[cos ( )]
[Free Flow Time] 12 12

ijt n n

k k n n

kij

t t
x

π π
β α γ= + + +∑       (4) 19 

In the above equation, [Travel Duration]ijt  is the reported travel duration between zone i and 20 

zone j at time-of-day t, and [Free Flow Time]ij  is the free flow travel time between zone i and 21 

zone j. The time-of-day “t” is measured in hours elapsed from an arbitrary time (3:00AM in this 22 

study). kx  includes the zonal land-use and OD distance variables, while the next two expressions 23 

with sine and cosine functions are cyclic functions of time-of-day t. The coefficients nα  and nγ  24 

on the cyclic functions capture time-of-day effects on travel duration. The number of nα  and nγ  25 

coefficients to be estimated is determined empirically based on statistical fit and intuitive 26 

considerations. In this paper, we used n = 3 since increasing n beyond 3 did not improve the 27 

statistical fit to data. Besides, the model with n = 3 resulted in the most reasonable travel time 28 

profiles reflecting the temporal variations observed in the data.      29 

Unlike travel times, the survey did not collect information on travel costs for each trip. 30 

Therefore, as in previous studies (6-10, 16), travel cost information was extracted from the 31 

regional model’s travel cost skims. Consequently, travel costs in the model vary across very 32 

broad time periods in the day. 33 

 34 

3.1 Transferability Assessment Approaches 35 

Transferability assessments were conducted using two approaches: (1) application-based 36 

approach and (2) estimation-based approach. For the application-based approach, separate 37 

models were estimated using data from each of the six counties and transferred to the other five 38 

counties. In addition, using the same approach, for each County, we assessed if a model built 39 

using data pooled from all eight Counties in the Bay area (other than the County to which the 40 
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model is transferred) is better transferable than a model built with data from a single County. 1 

Further, joint-context models were estimated for each County to test if the behavior in each 2 

County was different from that in other eight counties. 3 

  From now on and throughout the paper, a model built using data from all nine counties 4 

will be denoted by the term “base” model, while the models using data from eight counties (i.e., 5 

the pooled-data model without a specific County “c” under consideration) will be indicated by 6 

the term “base-c” model, where “c” could be any of the six counties – AL, CC, SC, SF, SM, and 7 

SN. For example, “base-AL” indicates the model built using data from all eight counties in the 8 

Bay Area except Alameda.  9 

  To assess the prediction ability of the transferred models using the application-based 10 

approach, a transferability assessment metric called Transfer Index (TI) (17) was used. 11 

,

,

( ) - ( )
( )

( ) - ( )

j i j reference j

j i

j j j reference j

L L
TI

L L

β β
β

β β
=       (5) 12 

where, ( )j iL β  is log-likelihood of the transferred model applied to the application context data, 13 

( )j jL β  is log-likelihood of the locally estimated model using data from the local/application 14 

context, and
,( )j reference jL β  is log-likelihood of a reference model (constants only model) in the 15 

local/application context. The closer the value of TI is to 1, the closer is the transferred models’ 16 

performance to a locally estimated model (in terms of the information captured).  17 

To assess transferability using the estimation-based approach, first a base model was 18 

estimated using data from all 9 counties in the San Francisco Bay area. Next, for each selected 19 

County, the dummy variable for that County was interacted with each of the variables in the base 20 

model to form the “difference” variables. The coefficients on these “difference” variables help in 21 

assessing if the corresponding variables are transferable between the specific County and the rest 22 

of the Bay area. Groups of such difference variables were included one by one in the model 23 

specification. For example, to test if females with kids in Santa Clara County had different time-24 

of-day preferences from those in all other counties, the dummy variable for Santa Clara was 25 

interacted with all the variables in the cyclic functions for the female with kids demographic 26 

segment. All these interactions were introduced simultaneously over the base model. The 27 

resulting model would recognize any potential differences in the time of day preferences of 28 

females with kids between Santa Clara and other Counties in the Bay area.  The decision of 29 

whether or not the preferences of females with kids were actually different between Santa Clara 30 

and other Counties was made based on a log-likelihood ratio (LLR) test for the entire set of 31 

Santa Clara specific variables just added. If the interaction variables (i.e., “difference” variables), 32 

as a set, are statistically different from zero (based on the LLR test), that indicates statistically 33 

significant differences in the time-of-day preferences between females with kids in Santa Clara 34 

and those in other Counties (hence the corresponding coefficients are NOT transferable). In 35 

addition to such statistical tests, the utility profiles were plotted as a function of time-of-day for 36 

females with kids in Santa Clara and for those in all other 8 counties to visually examine if the 37 

profiles appeared different. This approach was repeated for all demographic variables and level 38 

of service variables in the model specification until a final specification was arrived at. The final 39 

specification contains the specification for the base-SC model (that is the model for all 8 counties 40 

except Santa Clara) as well as the “difference” variables that were deemed to be statistically 41 

different from the base specification (the “difference” variables that were deemed insignificant 42 
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were dropped from the model). Using the same approach, joint context specifications were 1 

developed for each of the six counties considered in this study to examine what types of 2 

coefficients were transferable and what were not.  It is worth noting here that, in addition to 3 

allowing for County-specific differences in the deterministic utility functions, the differences in 4 

the unobserved factors were also allowed by estimating the ratio of the random error terms (i.e., 5 

scales) between the base and the application contexts. 6 

Finally, the base-c specification and the County-specification (for all six counties) were 7 

extracted from the above-described joint-context models to compute a transfer index value using 8 

Equation (5). This TI value was compared with the TI value of transfers from a base-c model that 9 

was estimated by pooling data from all eight Counties except County “c”. This helps in 10 

comparing the extent to which the transferability results differ when models are estimated 11 

separately (in the estimation and application contexts) vis-à-vis when models are estimated using 12 

joint-context estimation. Similarly, the TI values from transferring the base-c models were 13 

compared with those from transferring the individual county models to assess the extent to which 14 

pooling data helps in estimating better transferable models. 15 

 16 

4 EMPIRICAL RESULTS 17 

The time-of-day choice model estimation results are not reported in the form of tables to 18 

conserve space, but the important variables in the model specifications are discussed here briefly.  19 

The statistically significant demographic variables in the models include age, gender, females 20 

with children, income levels, full-time/part-time work status, work schedule flexibility (flexible 21 

vs. inflexible), and employment type (government employees). The time-of-day preference 22 

profiles for some of these demographic variables are plotted in Figure 1 in the form time-varying 23 

utility profiles for each variable. As can be observed from the tour start time profiles in the top 24 

row of the figure, the tour start utility profile for full-time workers is toward the left compared to 25 

that for part-time workers. This suggests full-time workers are likely to start their work tours 26 

earlier than part-time workers. Further, in the bottom row of the figure, as expected, female 27 

workers with children show a higher propensity to start their work tours later in the day when 28 

compared to males or females without children. Similarly, the tour end-time profiles in Figure 1 29 

show the influences of employment status (full time vs. part time), income levels, and presence 30 

of children at home on their work tour end-time choices. Full time workers and high income 31 

workers show a higher propensity to end their work tours after 5:00 PM when compared to their 32 

counterparts. Female workers with kids in households are found to end their work tours earlier 33 

than their counterparts. While not depicted in figures, all other demographic effects were 34 

reasonable and consistent with previous specifications in the literature. 35 

 The level-of-service variables that turned out statistically significant in the models 36 

include time-varying travel times (separately for home-work and work-home journeys) and 37 

travel costs, along with their interactions with work schedule flexibility (individuals with flexible 38 

work schedules were less sensitive to increases in travel times than those without flexible work 39 

schedules). The tour duration function also shows reasonable profiles with maximum utility for 40 

tour durations around 10 hours for full-time workers and smaller durations for part-time workers.  41 

Overall, the parameter estimates in most models have intuitive interpretations except in 42 

the County-specific models for San Francisco and Sonoma. In these two models, some of the 43 

coefficients and utility profiles appear unintuitive, perhaps due to small sample sizes, which will 44 

have a bearing on transferability assessments.  45 

 46 

 47 
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4.1 Transferability Assessment Results 1 

4.1.1 Results from the Application-based Approach 2 

The first part of Table 2 presents the TI values for inter-County transfers conducted using the 3 

application-based approach. As can be observed, the models transferred from and to Sonoma 4 

provide the lowest TI values, followed by those for the San Francisco. In most of the cases, 5 

higher TI values can be observed for models transferred from and to Santa Clara. Overall, 6 

Comparing the TI values to the corresponding sample sizes from each County suggest that the 7 

sample sizes have a strong influence on the TI values (e.g., San Francisco and Sonoma have the 8 

smallest samples, while Santa Clara has the largest sample). Therefore, it is difficult to draw 9 

inferences on what County characteristics help make the models more or less transferable. 10 

 11 

4.1.2 Results from the Estimation-based Approach  12 

As discussed earlier, in the estimation-based approach, County-specific “difference” variables 13 

were added to the base specification to explore any potential differences in the parameter 14 

estimates for each County under consideration and the rest of the Bay area. Important 15 

observations from these model results are discussed here without presenting the parameter 16 

estimates themselves (to conserve space).  First, the “difference” variables for the time-of-day 17 

specific constants for most of the counties were not statistically significant; suggesting the 18 

potential transferability of model constants from a model built using data pooled from all other 19 

eight counties to a specific County. Second, among the level-of-service variables, while the 20 

travel time coefficient for the home to work journey was found to be statistically different (hence 21 

not transferable) between specific counties and the rest of the Bay area, the travel time 22 

coefficient for the work to home journey and the travel cost coefficients appear to be 23 

transferable. Third, in the context of other variables, e.g., socio-demographic variables, almost 24 

95% of the coefficients (or more) in a County TOD model were not significantly different from 25 

the corresponding base-c model (when tested using “difference” variables). Overall, less than 5% 26 

of the coefficients were not found to be transferable. This provides encouraging empirical 27 

evidence of the transferability of time-of-day model coefficients from a pooled model. Another 28 

finding in favor of transferability is that no significant differences were found between the scales 29 

of the random error components for the base-c and county-specific utility functions (in all six 30 

models for six counties). 31 

  In addition to assessing transferability based on the statistical significance of “difference” 32 

variables in joint-context models (based on LLR tests), the time-varying utility profiles of the 33 

variables that were found to have statistically significant “difference” coefficients were 34 

compared. Some of them are presented in Figure 1 for illustration to the reader. One can observe 35 

from the profiles in the first row of the figure that the tour start- and end- time preference profiles 36 

of full-time employed adults in Santa Clara are visually different from those in other eight 37 

counties. Such differences in the time-of-day preference profiles are observed for the household 38 

income variable as well (profiles in the second row), however only for the tour end-time profiles. 39 

Similarly, the utility profiles in the third row show more discernible differences in the tour end-40 

time profiles for females with kids between the San Mateo and other eight counties in the Bay 41 

area, than the differences in the tour start-time profiles. These and other similar results (not 42 

shown in figures) suggest that the demographic preference coefficients related to home-to-work 43 

journeys may be more transferable than those related to work-to-home journeys. The reason for 44 

this is not clear and needs further investigation. 45 

 46 
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4.1.3 Comparison of Results from Application-based and Estimation-based Approaches 1 

To compare the performance of the application- and estimation-based approaches, the parameters 2 

estimated from base-c models (using both approaches discussed before) were transferred to each 3 

of the six counties considered in this study. As mentioned earlier, the base-c models are basically 4 

pooled models developed using data from eight counties (other than the County to which the 5 

model is transferred). For each County, two different “base-c” models are available – (1) the 6 

base-c model extracted from the joint-context estimation (where data from the specific County 7 

“c” was also included but “difference” variables were used to allow difference between the 8 

County “c” and other eight counties), and (2) the base-c model estimated separately using only 9 

the data from eight counties. The second part of Table 2 presents the TI values obtained from 10 

these transfers. As can be observed, the TI values of base-c models extracted from joint-context 11 

estimations are consistently higher than those from the application-based approach. This is 12 

because the estimation-based approach considers only the statistically different parameters that 13 

are different between the base and application contexts, while keeping all other parameters the 14 

same. The application-based approach, on the other hand, allows the values of all parameters to 15 

be different, even if they are not statistically different. All such numerical differences among the 16 

parameters add up to a substantial difference in terms of log-likelihood values (and even 17 

predictions and elasticity measures). Thus, whenever possible, it is useful to employ the 18 

estimation-based approach for transferability assessments.  19 

 20 

4.1.4 Does Pooling data from Multiple Regions Result in Better Transferable Models?  21 

Comparison of the TI values in the first part of Table 2 (i.e., for inter-county model transfers) to 22 

those in the second part (i.e., for transfers from pooled-data models, or base-c models, to specific 23 

counties) suggests that transferability improves significantly after pooling data from all other 24 

eight counties. These results point to the potential benefits of pooling data from multiple regions 25 

for developing better transferable models. However, it is not clear if the observed improvement 26 

in transferability is only due to increased sample sizes, or if the specific geographical contexts 27 

from which data comes also have an influence on this improvement. This section attempts to 28 

address this issue via carefully conducted experiments that control for sample size issues. Figure 29 

2 presents the results of all the experiments conducted to understand the influence of, and the 30 

reasons why it helps to, pooling data from multiple regions on model transferability.  31 

First, we investigated the influence of sample size (used to build the base context model) on 32 

model transferability, in the context of transfers from Santa Clara to Alameda. To do so, first 10 33 

random samples, each of 500 individuals, were drawn from Santa Clara. Then time-of-day 34 

choice models were estimated with all these datasets and transferred to (i.e., applied to the data 35 

from) Alameda. Transfer Index (TI) values were computed for all these transfers and averaged 36 

over the 10 different random samples. This same procedure was repeated by gradually increasing 37 

the sample size of the transferred model, in increments of 500 individuals from the Santa Clara 38 

County. The TI values for each sample size – 500, 1000, 1500, 2000, 2500, 3000 (averaged over 39 

10 different random samples) – are plotted in the first part of the graph on a solid curve. As can 40 

be observed, the TI values increase with sample size suggesting a strong influence of sample size 41 

on model transferability. Models estimated with small sample sizes have poor TI values (-0.59 at 42 

sample size = 500). The rate of increase of TI is steep in the beginning but slows down after a 43 

sample size of 1500. 44 

To control for the effect of sample size, we conducted additional experiments by keeping 45 

the sample size constant. For example, at a sample size of 3000, we compared the TI values of a 46 

model built with all data from Santa Clara (SC) to those built using data for 1500 individuals 47 
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from Santa Clara and the remaining 1500 individuals from other counties (i.e., pooling data from 1 

other counties). The TI values for all the combinations (averaged over 10 different random 2 

samples for each combination) for a total sample size of 3000 are plotted using diamond shaped 3 

dots in the figure. Similar exercise was undertaken for a total sample size of 2000 (circular dots 4 

in the figure) and 1000 (triangular dots in the figure). Several important observations can be 5 

made from all these TI values. First, for any sample size, the TI values of models built using data 6 

pooled from multiple counties are generally higher than those built using all data from a single 7 

County (Santa Clara). Second, the TI values strongly depend on the counties from which data is 8 

pooled. Specifically, at all sample sizes, models with data pooled (to Santa Clara data) from 9 

either Contra Costa or Sonoma or a combination of the two resulted in higher TI values than 10 

those with data pooled from San Mateo. 11 

The above observations are re-iterated in the second part of Figure 2 (dotted curve). This 12 

part of the graph is based on TI values of models built by simply adding, to the 3000 records 13 

from Santa Clara, more data from Contra Costa (1300 more records), and then from Sonoma 14 

(800 more records), and then from San Mateo (1200 more records). Specifically, adding data 15 

from Contra Costa and Sonoma resulted in an increased TI value, while doing so from San 16 

Mateo did not help increase the TI value. These results suggest that while pooling data from 17 

multiple regions can potentially help in building better transferable models, care must be taken in 18 

choosing the regions from which data is pooled. However, these results do not provide guidance 19 

on which regions to pool the data from (or which regions to transfer models from). To delve into 20 

these issues, we examined the descriptive statistics of the variables used in the model 21 

specification for the different counties, as described next. 22 

First, from Table 1, comparing the demographic characteristics of different counties to those 23 

in Alameda (the region to which models were transferred in this exercise) suggests that Contra 24 

Costa comes closest to Alameda in its demographic makeup. While the land-use characteristics 25 

appear to be different between these two counties, the demographic characteristics relevant to the 26 

time-of-day choice model appear very similar while the commute travel conditions are not very 27 

different. Therefore pooling data from Contra Costa to data from Santa Clara resulted in a better 28 

TI value than using more data from Santa Clara itself. This may also be a reason why Table 2 29 

shows a higher TI value (0.63) for a model transferred from Contra Costa to Alameda than most 30 

of the TI values observed in Figure 2. Second, again from Table 1, the demographic 31 

characteristics of Santa Clara are close to those in San Mateo. This is perhaps a reason why 32 

adding data from San Mateo to that from Santa Clara did not result in a discernible improvement 33 

in TI values (because it was not bringing any more variability to make it closer to the application 34 

context, Alameda). Third, Table 3 shows the descriptive statistics of the following pooled-data 35 

samples: (a) Santa Clara + San Mateo, (b) Santa Clara + Sonoma, (c) Santa Clara + Contra Costa 36 

(d) Santa Clara + Contra Costa + Sonoma, and (e) Santa Clara + Contra Costa + Sonoma + San 37 

Mateo. As can be observed from Table 3 and Figure 2, the combinations that are closest to 38 

Alameda in the composition of the explanatory variables used in the model are the combinations 39 

that exhibit higher TI values. These results suggest that for achieving better transferability of 40 

time-of-day choice models, one ought to build models using data that exhibits similar 41 

demographic characteristics (especially those relevant to time-of-day choice models) as in the 42 

application context.   43 

 44 

 45 

 46 
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5 CONCLUSIONS 1 

This paper presents an empirical assessment of the spatial transferability of tour-based time-of-2 

day choice models among different Counties in the San Francisco Bay area. Model 3 

transferability was assessed using two different approaches: (1) application-based approach and 4 

(2) estimation-based approach. The former approach tests the transferability of a model as a 5 

whole while the latter approach allows the analyst to test which specific coefficients in the model 6 

are transferable. Inter-County transferability assessments using the application-based approach 7 

did not reveal useful information because of confounding effects of sample sizes. Models built 8 

using small datasets resulted in poor transferability results, suggesting the importance of 9 

sufficient sample sizes in building models. Further, using the same (application) approach, 10 

models built using data pooled from multiple counties were found to be more transferable than 11 

models built using data from a single County. Such pooled-data models built using the 12 

estimation-based approach (or joint-context estimation) exhibited even better transferability 13 

indices than those built using the application-based approach. This is because the application-14 

based approach allows all the parameters to be different between the model-lending context and 15 

the model-borrowing context, while the estimation-based approach allows only the statistically 16 

different parameters to be different while keeping all other parameters the same. Finally, the 17 

estimation-based approach provided encouraging results on the transferability of time-of-day 18 

choice models, with almost 95% of the model parameters found to be not statistically different 19 

(hence transferable) between any specific County and the rest of the Bay area. Among the non-20 

transferable parameters include the home-work travel time coefficient and a few demographic 21 

preference coefficients. The transfer index values of such models ranged from 84% to 95% 22 

suggesting that such pooled models capture a large proportion of the behavior in the contexts to 23 

which they are transferred, when assessed using the joint context estimation approach. Therefore, 24 

whenever possible, joint-context estimation should be used to transfer models and to assess 25 

model transferability. 26 

Additional transferability experiments were performed to understand the reasons why 27 

pooling data from multiple regions helps in achieving better transferability. Increased sample 28 

size was one reason why pooling data helped in achieving better transferability. Sample size 29 

increases resulted in steep increases in transferability at the beginning (i.e., at smaller sample 30 

sizes) but the rate of increase slows down after reaching a sample size of 1500. Additional 31 

transferability experiments controlling for sample size effects suggested that while pooling data 32 

from multiple regions can potentially help in building better transferable models, attention must 33 

be paid in choosing the regions from which data is pooled. Specifically, time-of-day choice 34 

models built using data that exhibits similar demographic characteristics as in the application 35 

context (especially the characteristics that are relevant to time-of-day choices) exhibit better 36 

transferability. Therefore, data should be borrowed in such a way that the resulting estimating 37 

data exhibits similar demographic characteristics to those in the application context. These 38 

findings provide empirical evidence in support of a widely held notion in the profession that 39 

models are likely to be better transferable between regions of similar characteristics. 40 

The results in this study are based on transfers between counties within the San Francisco 41 

Bay area. It is not clear if the encouraging results on model transferability can be generalized to 42 

transfers between different metropolitan regions in the country. Additional empirical evidence is 43 

necessary to comment on transferability between more geographically dispersed contexts.  44 

 45 

 46 
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TABLE 1 Sample Characteristics 

   *Averages are reported, with standard deviations in the parentheses. 

 ** All these variables were used as explanatory variables in the time-of-day choice models estimated in this study. 

 

 
Alameda Contra Costa Santa Clara San Francisco San Mateo Sonoma 

Sample Size (# employed adults)  1940 1348 3001 538 1209 881 

Gender** 
 

 
    

Male 53.6(%) 52.4(%) 56.2(%) 56.9(%) 50.0(%) 48.1(%) 
Female 46.4(%) 47.6(%) 43.8(%) 43.1(%) 50.0(%) 51.9(%) 

Ethnicity 
 

 
    

Caucasian 73.4(%) 80.7(%) 72.8(%) 72.3(%) 77.9(%) 89.1(%) 
African American  4.6(%)    3.3(%)   1.6(%)   2.8(%)   1.5(%)    0.7(%) 

Asian/Pacific Islander 11.9(%)    5.9(%)    15.8(%) 13.8(%) 10.3(%)    2.0(%) 

Other 10.1(%)  10.1(%)  9.8(%) 11.1(%) 10.3(%)    8.2(%) 

Employment Type** 
 

 
    

Govt. Employees 18.2(%) 18.5(%) 10.1(%) 17.3(%) 14.0(%) 15.0(%) 

Other 81.8(%) 81.5(%) 89.9(%) 82.7(%) 86.0(%) 85.0(%) 

Employment Status** 
 

 
    

Full-Time 87.8(%) 88.1(%) 90.0(%) 93.7(%) 89.3(%) 85.9(%) 
Part-Time 12.2(%) 11.9(%) 10.0(%)   6.3(%) 10.7(%) 14.1(%) 

Employment Schedule** 
 

 
    

Flexible 63.8(%) 61.4(%) 74.4(%) 70.4(%) 68.7(%) 58.8(%) 
Not Flexible 36.2(%) 38.6(%) 25.6(%) 29.6(%) 31.3(%) 41.2(%) 

Household Size 
 

 
    

1 16.0(%) 13.6(%) 15.1(%) 28.6(%) 17.0(%) 13.5(%) 
2 36.9(%) 39.9(%) 40.9(%) 43.7(%) 40.7(%) 41.1(%) 

3+ 47.1(%) 46.5(%) 44.0(%) 27.7(%) 42.3(%) 45.4(%) 

Number of Children** 
 

 
    

0 63.4(%) 61.0(%) 64.3(%) 78.6(%) 66.8(%) 61.1(%) 

1 16.4(%) 16.0(%) 15.7(%)   8.7(%) 14.1(%) 17.5(%) 

2 15.5(%) 17.1(%) 15.1(%) 10.6(%) 15.1(%) 16.2(%) 
3+   4.7(%)   5.9(%)   4.9(%)   2.1(%)   4.0(%)    5.2(%) 

Household Income** 
 

 
    

Low(<=25K)   2.7(%)   2.7(%)   1.5(%)   2.8(%)  2.2(%)   4.8(%) 
Medium(25K-75K) 40.1(%) 38.7(%) 28.1(%) 39.6(%) 32.8(%) 50.7(%) 

High(>75K) 57.3(%) 58.6(%) 70.4(%) 57.6(%) 65.1(%) 44.4(%) 

Number of Vehicles** 
 

 
    

1 81.1(%) 83.3(%) 83.1(%) 81.8(%) 84.2(%) 84.9(%) 

2  13.9(%) 11.8(%) 12.5(%) 13.0(%) 12.3(%) 11.0(%) 

3+    5.0(%)   4.9(%)    4.3(%)   5.2(%)    3.4(%)   4.1(%) 

Area Type 
 

 
    

Home zone 
 

 
    

CBD   0.3(%) 0.0(%)   0.2(%) 14.7(%)   0.0(%)   0.0(%) 
Urban 22.2(%) 5.6(%) 18.1(%)  85.3(%) 24.7(%)   4.9(%) 

Suburban 74.4(%)     84.9(%) 79.7(%)    0.0(%) 71.2(%) 77.0(%) 

Rural   3.1(%) 9.6(%)    2.0(%)    0.0(%)    4.1(%) 18.2(%) 

Work zone 
 

 
    

CBD 10.6(%) 8.1(%)    5.5(%) 35.9(%)   9.4(%)   1.6(%) 

Urban 39.8(%)     32.1(%) 54.4(%) 44.1(%) 52.4(%) 12.5(%) 
Suburban 47.3(%)     55.3(%) 38.4(%) 18.2(%) 35.7(%) 76.5(%) 

Rural    2.3(%) 4.5(%)    1.7(%)   1.9(%)   2.4(%)    9.4(%) 

Commute Travel* 
 

 
    

Free Flow Time(minutes)** 18.0(10.5) 21.1(12.9) 16.1(9.0) 19.2(12.2) 19.4(11.3) 20.2(13.8) 

Distance(miles)** 12.9(10.3) 15.4(12.4) 10.9(8.8) 11.9(11.9) 13.5(10.3) 12.5(12.8) 

Tour Duration (hours)**  9.8(2.8) 9.7(2.9)    9.8(2.6) 9.8(2.9) 9.9(2.6) 9.2(2.9) 
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TABLE 2 Transfer Index 
 

Application-based Approach (Inter-County Transfer)  

                  Transferred  To 

                               

Transferred  From 
 

Alameda Contra Costa Santa Clara San Francisco San Mateo Sonoma 

Alameda -- 0.53 0.66 0.42 0.56 0.23 

Contra Costa 0.63 -- 0.58 0.28 0.58 0.24 

Santa Clara 0.68 0.49 -- 0.44 0.74 0.09 

San Francisco 0.23 -0.13 0.42 -- 0.40 -0.18 

San Mateo 0.37 0.17 0.56 0.39 -- -0.03 

Sonoma -0.21 -0.26 -0.18 -0.23 -0.02 -- 
  

     
Application-based vs. Estimation-based Approach (Pooled Model Transfer) 

Base-c (Application-based) * 0.79 0.66 0.78 0.57 0.75 0.36 

Base-c (Estimation-based) * 0.94 0.84 0.87 0.95 0.94 0.50 
       

 

* Base-c models are basically pooled-data models for eight counties. In the term “Base-c”, c can be AL (Alameda), Contra Costa (CC), Santa 
Clara (SC), San Francisco (SF), San Mateo (SM), or Sonoma (SN). For instance, “Base-AL” indicates the model that includes all counties in the 

Bay Area except Alameda. Two types of “base-c” models were estimated:  (1) base-c models estimated separately using only the data from eight 

counties, and (2) base-c model  extracted  from the joint context estimation (where data from the specific County “c” was also included) by 
setting the County-specific dummy variables to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         



 

FIGURE 1 Utility profiles based on (a) Employment Status (Santa Clara and Other Counties), (b) Household 

(Santa Clara and Other Counties), and (c) Female with Kids (San Mateo and Other Counties

Utility profiles based on (a) Employment Status (Santa Clara and Other Counties), (b) Household 

(Santa Clara and Other Counties), and (c) Female with Kids (San Mateo and Other Counties
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Utility profiles based on (a) Employment Status (Santa Clara and Other Counties), (b) Household Income 

(Santa Clara and Other Counties), and (c) Female with Kids (San Mateo and Other Counties) 
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