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ABSTRACT 

This paper presents an empirical assessment of the spatial transferability of person-level daily 

activity generation and time-use models among different regions in Florida and between Florida 

and California. The empirical models are for unemployed adults based on the multiple discrete-

continuous extreme (MDCEV) structure. An examination of the prediction properties of the 

MDCEV model is provided first. The results shed new light on the prediction properties of the 

MDCEV model that have implications to transferability, as well as provide insights into how the 

model structure can potentially be improved. Transferability was evaluated for two approaches to 

transferring models – naïve transfer and updating model constants – using different measures 

such as log-likelihood based metrics, aggregate predictive ability, and model sensitivity to 

changes in demographic characteristics. Results suggest that accurate prediction of aggregate 

observed patterns is not an adequate yardstick to assess transferability; emphasis should be 

placed on model sensitivity to changes in explanatory variables. Updating constants helps in 

improving a transferred model’s aggregate prediction ability but not necessarily in improving its 

policy sensitivity. The extent of transferability between different regions within a state is greater 

than that across different states. Within Florida, there is greater transferability between urban 

regions (especially between Southeast Florida and Central Florida regions) than between urban 

and rural regions. 
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1 BACKGROUND 

Spatial transferability of travel forecasting models can help in significant cost savings for regions 

that cannot afford to invest in extensive data collection and model development procedures. This 

issue is particularly important for tour-based/activity-based models (ABMs) whose development 

typically involves significant data inputs and long production times.  

The literature abounds with empirical studies on this topic (see 1, 2, & 3 for recent 

reviews). However, most work to date has been devoted to the transferability of linear 

regression-based travel generation models and logit-based mode-choice models. Few studies 

focus on travel choices other than trip generation or mode-choice and on econometric model 

structures other than linear regression, ordered response, or multinomial logit. Transferability 

assessments in the context of tour-based/activity-based model systems are much fewer. Only a 

handful of studies (e.g., 4, 5, & 6) document the transferability assessment of activity-based 

model systems to varying degrees, while some recent efforts are underway (e.g., the SHRP-2 

C10 studies) and a few studies focus on the transferability of specific components of ABMs (e.g., 

7).  

Among the different model components of an ABM system, the transferability of 

activity/travel generation components is of particular interest. Since activity/travel generation is 

modeled at either person-level or household-level, the amount of data available for such models 

can, sometimes, be smaller compared to the data available for tour-level and trip-level models. 

At the same time, as discussed in Sikder et al. (1), existing empirical evidence suggests the 

possibility that activity/travel generation model components might be more transferable than 

those for other travel choices (e.g., mode choice, destination choice). This is perhaps due to a 

comparatively lower dependency of individuals’ daily activity and travel generation on the 

spatial structures and transport system characteristics of their regions. Further, empirical studies 

(e.g., 8) suggest notable similarities in activity participation and time-use patterns across a 

variety of geographical contexts. However, there is a dearth of empirical evidence on the 

transferability of activity/travel generation model components used in ABMs. 

Among the different approaches to model activity/travel generation, time-use based 

approaches are of particular interest. This is because a fundamental tenet of the activity-based 

approach is to view individuals’ activity-travel patterns as a result of their time-use decisions. 

With a given amount of time (e.g., 24 hours in a day), individuals decide how to allocate the time 

to different activities subject to their socio-demographic, spatio-temporal, and other constraints 

and opportunities. Motivated by the theoretical strength of the time-use based approaches, 

significant methodological developments have occurred in the recent past on modeling 

individuals’ activity participation and time-use patterns. Notable among those is the development 

of the multiple discrete-continuous extreme value (MDCEV) model (9), which has now been 

used in a large number of activity participation and time-use studies (e.g., 10). The MDCEV 

structure is now at the heart of a household-level activity generation model component of an 

activity-based model system being developed in the South California region (11).  

 

2 CURRENT RESEARCH 

In view of the above discussion, this study aims to provide an empirical assessment of the spatial 

transferability of person-level daily out-of-home activity generation and time-use models. The 

geographical contexts of interest in this study are different regions in the State of Florida. Since 

Florida is considering different options (e.g., develop new models vs. transfer models) to develop 

ABMs in the state, the results from this study will be of potential use. In addition, the study 
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investigated model transferability between two different states – California (CA) and Florida 

(FL). This provides an opportunity to compare the extent of transferability between different 

states (inter-state transferability) to that across different regions of a state (intra-state 

transferability). The demographic segment of focus in the paper is unemployed adults (age >18).  

The econometric model structure used to model activity participation and time-use is the 

MDCEV model. Since this is the first empirical study of the transferability of an MDCEV-based 

model, some effort was devoted to understanding the prediction properties of the MDCEV 

model. This helped shed new light on the prediction properties of the MDCEV model that will 

have implications to model transferability. 

The simplest approach to transfer a model is called the naïve transfer, where the 

specification and parameter estimates of a model developed in one context (estimation context) 

are directly used in another context (application context) without any modifications. The other 

approaches used in the literature are updating constants, transfer scaling, Bayesian updating, 

combined transfer estimation, and joint context estimation. In this study, we focus on naïve 

transfer and updating constants. In the updating constants approach, the specification and all 

parameter estimates other than constants are directly transferred from the estimation context to 

the application context; only the constants are estimated using the application context data, while 

fixing the other parameters as those from the estimation context.  

Different metrics have been used in the literature to assess model transferability. These 

can be broadly categorized as: (1) Statistical tests of model equivalence, (2) Aggregate-level 

predictive accuracy metrics, and (3) Policy prediction performance. This study uses at least one 

metric from each category.  

The next section provides an overview of the data used in the study. Section 4 discusses 

the MDCEV model structure and its prediction properties. Section 5 summarizes the empirical 

model estimation results. Section 6 presents and discusses the transferability assessment results. 

Section 7 concludes the paper.  

 

3 DATA 

The primary data source used for the analysis is the 2009 National Household Travel Survey 

(NHTS) for the states of California and Florida. For all unemployed adults (age >18) in the data, 

their weekday daily travel information was used to define eight out-of-home (OH) activities: (1) 

Shopping (Shop), (2) Other maintenance, such as buy services, gas, etc. (Maintenance), (3) 

Social/recreational (Soc rec.), (4) Active recreation, such as go to gym, exercise, and play sports 

(Active rec), (5) Medical, (6) Eat out, (7) Pick up/drop off (pickup/drop), and (8) other activities. 

For each individual, the daily time-allocation to each of these activity categories was calculated 

by aggregating the “dwell time” at the destination of each trip made for that activity purpose. 

The time spent in in-home (IH) activities was computed as total time in a day (24 hours) minus 

the time allocated to the above out-of-home activities, sleep time (assumed 8.7 hours, as 

computed from the 2010 American Time Use Survey data), and travel time.   

 

3.1 Geographical Regions Considered for Transferability Assessment 

For intra-state transferability assessment, the state of Florida was divided into seven 

geographical regions based on existing travel demand modeling regions in the state. These are: 

(1) Southeast Florida (SEF), (2) Central Florida (CF), (3) Tampa Bay (TB), (4) Northeast Florida 

(NEF), (5) Urban areas in district1 (D1U), (6) Urban areas in district3 (D3U), and (7) Rural 

Florida. Two of the seven regions (D3U and NEF) were not included in the analysis because of 



Sikder and Pinjari   4 

 

small sample sizes. Of the remaining 5 regions, SEF, CF, and TB include some of the major 

urban regions in Florida (Miami, Orlando, and Tampa), while D1U comprises counties that are 

less urbanized compared to the major urban regions and Rural Florida includes all rural counties 

in Florida with low population and employment densities. Models were transferred only from 

three regions (SEF, CF, and TB) to all other 5 regions (SEF, CF, TB, DIU, and R). Lower 

sample sizes of DIU and Rural regions played a role in the decision to not transfer from these 

regions. At the same time, the state of Florida is considering options for transferring models to 

D1U and Rural locations, while the major urban regions are moving ahead with the development 

of their own activity-based models. For inter-state transferability assessment, the entire data in 

the state of Florida was used to construct the Florida (FL) model and likewise for the California 

(CA) model.  

 

3.2 Sample Description 

Table 1 presents descriptive information about the data used in the analysis, with the first row 

presenting the sample sizes for different geographies considered in the study. It can be observed 

that the aggregate-level differences in the demographic characteristics are greater across the two 

states (CA and FL) than those across different regions within Florida. For example, the 

proportion of unemployed elderly (age > 65) in Florida (65%) is considerably higher than that in 

California (53.0%). Greater proportions of whites, less educated individuals, and lower income 

levels are also observed in Florida than in California. The different regions within Florida are 

more similar in the demographic makeup, except a few exceptions (noted in bold font) such as 

greater proportion of non-whites in the Southeast (Miami) region, greater proportion of elderly in 

D1U region, and greater proportions of lower education and income levels in rural Florida.  

 In the context of activity participation rates (percentage of individuals participating in 

each activity) and average daily time allocation, one can observe considerable differences 

between the non-workers in California and Florida. Specifically, individuals in Florida exhibit 

higher participation rates in different activities but lower time allocations (than those in CA). 

This is probably because those in Florida participle in greater number of OH activities per day 

than those in California (as shown in the last row). Within different regions of Florida, the 

differences in the aggregate activity participation rates and time allocations are not as much 

different (as those across the two states). Of course, a few exceptions (noted in bold font) are 

notable - the activity participation and time allocation to active recreation is significantly lower 

in rural Florida. 

In summary, unemployed adults in California appear to be significantly different from 

those in Florida in terms of socio-demographic characteristics, activity participation and time-use 

patterns. The differences across different regions within Florida appear to be smaller, although 

rural locations display some notable differences than other locations. Though the descriptive 

statistics cannot shed full light on the transferability of a time-use model from region to another, 

the noted differences may, in part, have a bearing. 

    

4 PREDICTION PROPERTIES OF THE MDCEV MODEL 

The MDCEV model estimated in this study is based on the following utility form (9):  

 1 1

2

( ) ln( ) ln ( / ) 1 .........................(1)

K

k k k k

k

U t t   


  t  
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In the above function,
 

( )U t  is the total utility derived by an individual from his/her daily time-

use. It is the sum of sub-utilities derived from allocating time (
k

t ) to each of the activity types k 

(k =1,2,…,K). 
k


 
, labelled the baseline utility for alternative k, is the marginal utility of time 

allocation to activity k at the point of zero time allocation. Between two alternative activities, the 

activity with greater baseline marginal utility is more likely to be participated (or chosen). 
k


 

accommodates corner solutions (i.e., possibility of not choosing an alternative) and differential 

satiation (diminishing marginal utility with increasing consumption) effects for different activity 

types. The 1
st
 alternative, designated as in-home activity, doesn’t have a 

k


 
parameter since all 

individuals in the data participate in the in-home activity (i.e., there is no need of corner 

solutions for this activity).  

The influence of observed and unobserved individual characteristics and activity-travel 

environment (ATE) measures are accommodated as 
1 1

exp( ); exp( ' );
k k k

z       and 

exp( );
k k

w   where,  
k

z  and 
k

w  are observed socio-demographic and ATE measures 

influencing the choice of and time allocation to activity k,   and   are corresponding parameter 

vectors, and 
k

  (k=1,2,…,K) is the random error term in the sub-utility of activity type k. The 

model is derived based on the assumptions that: (1) individuals choose their daily time-use 

patterns to maximize the total utility subject to a time budget constraint 
1 to 

k

t K

T t


   (T is a 

known amount of time budget available to the individual), and (2) the random error terms 
k

  

(k=1,2,…,K)  follow the independent and identically distributed (iid) standard Gumbel 

distribution with unit scale parameter. 

 Table 2 presents the prediction results of the models estimated for the 5 regions in Florida 

(the predictions of the two state-wide models are not presented to save space). For each region, 

the prediction was performed on its own estimation sample. All the predictions in this paper were 

performed using the MDCEV forecasting algorithm proposed by Pinjari and Bhat (12), using 100 

sets of random draws to cover the error term distributions for each individual in the data.  

The first set of rows present the predicted (and observed) aggregate shares of individuals 

participating in each activity type (i.e., the discrete choice component) and the average daily time 

allocation (or duration) to each activity. The predicted aggregate shares for each activity were 

computed as the proportion of the instances the activity was predicted with a positive time 

allocation across all 100 sets of random draws for all individuals. The predicted average duration 

for an activity was computed as the average of the predicted duration (or time allocation) across 

all random draws for all individuals. It can be observed that the MDCEV models for all 5 regions 

perform well in predicting the aggregate shares of participation in each type of activity (i.e., the 

discrete choice of each alternative). In fact, we noticed that a constants only model resulted in the 

predicted discrete choice shares same as the observed shares. These results suggest the existence 

of a fundamental property of the MDCEV model similar to that of the multinomial logit (MNL) 

model that a constants only model, when applied to the estimation data, would yield the same 

discrete choice shares as observed in the data. It is difficult to prove this property analytically, 

because there is no analytical expression to derive the probabilities of discrete choices from the 

MDCEV model. But additional prediction exercises with other datasets resulted in the same 

findings, reinforcing our belief on the existence of this property. The property has implications to 

the transferability of models with MDCEV structure. Specifically, an MDCEV model transferred 
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from elsewhere can simply be adjusted by updating the constants using data from the application 

context to help improve its prediction of the aggregate discrete choice shares. 

In the context of aggregate time allocation to each activity type (i.e., the continuous 

choice component), the model is under-predicting the time allocation to in-home activities and 

over-predicting the time allocation to all out-of-home activities except active recreation. A 

plausible reason behind this discrepancy between the predicted and observed aggregate durations 

is the asymmetry and the fat right tail of the Gumbel distribution used in the MDCEV model. 

That is, there is a non-negligible chance that the 
k

  values become quite large and therefore lead 

to unrealistically large time allocations for several choice alternatives. Given the asymmetry of 

the Gumbel distribution, if large durations are predicted even for a few instances over a large 

number of error draws, the average of the predicted durations becomes quite large. In addition, 

whenever a large positive number is drawn for the error term of an out-of-home activity, the 

alternative hogs up a large amount of the time budget leaving less time for the in-home activity. 

Further research is warranted to delve deeper into this issue and explore alternative (to Gumbel) 

distributional assumptions that can help overcome this problem.  

  

5 EMPIRICAL MODEL ESTIMATES 

The MDCEV time-use model was estimated for all seven geographies. Considering the word 

limit, the model estimation results are not provided in the paper but available from the authors. 

Overall, the parameter estimates have intuitive interpretations and identical signs in all the 

models. The same factors were often found to influence the time-use choices across all 

geographies. It is worth noting that the baseline utility constants for the out-of-home activities in 

the CA model were larger in magnitude (with –ve signs) than those in the Florida models, since 

the out-of-home activity participation rates in California were lower than that in Florida. Further, 

the constants in the satiation parameters of the California model were larger (with +ve sign) than 

those in the Florida models, since the average time allocation to out-of-home activities by 

Californians (if they participate in the activity) was greater than that by Floridians. The 

differences in the model constants as well as other parameter estimates within the different 

regions of Florida were not as high as compared to those across the two states. To the extent that 

the scale of unobserved factors influencing choices across the different regions are similar, the 

differences in the model coefficients suggest that models may be better transferable within a state 

than across states that are as different as California and Florida. 

 

6 TRANSFERABILITY ASSESSMENT   

To assess inter-state transferability, the model estimated for California was transferred to Florida 

and vice-versa. For intra-state transferability assessment, the model estimated for each of the 

three major urban regions (SEF, CF, and TB) was transferred to the other four regions in Florida 

(including D1urban and rural regions). Thus, 14 different transfers were performed (2 inter-state 

transfers and 12 intra-state transfers) for each of the two transfer methods - naïve transfer and 

updating constants (28 transfers in all).  

 

6.1 Transferability Test Statistic (TTS) 
Transferability test statistic (TTS) is used to test the hypothesis that the transferred model is 

statistically equivalent to a model estimated in the application context (13). 
 

                 
  - 2[ ( ) - ( )]....................(3)

j i j j
TTS L L   
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where, ( )
j i

L  = log-likelihood of the transferred model applied to the application context data, 

and ( )
j j

L  = log-likelihood of the locally estimated model using data from the application 

context. Although not reported in the tables, for no single transfer was the TTS value lower than 

the critical chi square value even at the 90% confidence level. These results echo the well-

established finding that statistically rigorous tests usually reject model transferability (e.g., 14).  

However, rejection by a statistical test does not necessarily mean the poor prediction or 

forecasting ability of a model. Since the end-objective of a model is for use in prediction and 

policy analysis, several other measures are used for transferability assessment, as discussed next. 

 

6.2 Log-likelihood-based Measure: Transfer Index (TI) 
Transfer index (TI), first used by Koppelman and Wilmot (15), measures the degree to which the 

log-likelihood of a transferred model exceeds that of a reference model (e.g., constants only 

model) relative to a model estimated in the application context.  

,

,

( ) - ( )
( ) ....................(4)

( ) - ( )

j i j reference j

j i

j j j reference j

L L
TI

L L

 


 
  

where, ( )
j i

L   and ( )
j j

L  are the same as defined earlier and 
,

( )
j reference j

L   is the log-likelihood 

of a reference model in the application context. The closer the value of TI is to 1, the closer is the 

transferred models’ performance to a locally estimated model (in terms of the information 

captured). The upper bound of this index is 1 unless the transferred model performs better than 

the locally estimated model.  

From Table 3, one can observe that the TI values for inter-state naïve transfers are rather 

poor with negative values (-0.67 and -1.67), suggesting that the transferred models perform 

worse than locally estimated constants only models. For intra-state naïve transfers within Florida, 

the TI values range from -0.11 to 0.59 with greater values for transfers between major urban 

regions (SEF, CF, and TB) and lower values for transfers from these three urban regions to D1U 

and rural region. The highest TI values can be noted for the models transferred between the SEF 

and CF regions. Of course, the TI values for transfers from region to another are not the same as 

those for transfers in the other direction, suggesting that transferability is asymmetric. 

After updating the model constants with the application context data, the TI values 

improved in all cases. Most previous studies (e.g., 16) found this result in the context of the 

MNL model. These results suggest that the MDCEV model structure also lends itself to 

improved TI values (hence improved performance) after updating constants using data from the 

application context. This is probably due to the property discussed in Section 2. There was a 

significant improvement in the TI value for the inter-state transfers and considerable 

improvement for intra-state transfers. Even among intra-state transfers, the percentage 

improvement in TI value after updating constants is greater for those transfers with low initial TI 

value. In fact, the models with rather poor TI values (-ve values) for naïve transfer were the ones 

with the most improved TI values after updating constants.  

 

6.3 Aggregate-level Predictive Accuracy 
To assess the aggregate-level predictions of a transferred model, two metrics were used: (1) Root 

mean square error (RMSE) and (2) Relative Aggregate Transfer Error (RATE).  

RMSE measures the aggregate-level predictive ability of a model against aggregate observed 

patterns in the data.  
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2

....................(5)

k k

k

k

k

P REM

RM SE
P

 
 


 
 
 




 

where, 
k

P  and 
k

O  are the aggregate predicted and observed shares (or durations averaged over 

all individuals), respectively for alternative k , and 
k k

k

k

P O
REM

O


   is the percentage error in 

the prediction of alternative k. RATE is a relative measure; it measures the aggregate predictive 

ability of the transferred model relative to that of a locally estimated model.  

                                      

( )
  ....................(6)

( )

j i

j j

RM SE
RATE

RM SE




 .

 
Table 4 reports the RMSE and RATE values for all the transfers conducted in the study. 

As expected, the aggregate errors of the locally estimated models (in bold) are lower than those 

of transferred models.  

For naïve transfers, the RATEs for inter-state transfers are higher than those for intra-

state transfers, suggesting that model transfers across the states can result in poorer aggregate 

predictions than transfers within the state. This is consistent with the findings in the context of 

TI. Among intra-state naïve transfers, the RATEs are higher for transfers from urban to rural 

locations (ranging from 1.48 to 4.00) than those for urban-urban transfers (ranging from 1.00 to 

2.33), suggesting greater transferability from urban regions to urban regions than to a rural 

region. The lowest aggregate relative errors can be observed for these transfers: SEFCF, 

CFTB, and CFSEF.  

After updating the constants of the transferred models, there is significant improvement 

in the RMSE values. In most cases, regardless of how poor the naïve transfer performance was, 

the aggregate prediction errors from transferred models drop to the level of the errors from the 

corresponding locally estimated model (bringing down the RATE value close to or equal to 1). 

These results suggest that, similar to previous findings in the context of MNL models (16), 

updating the constants of a transferred MDCEV model can help in improving its aggregate 

prediction performance to that of a locally estimated model. Recall that similar results were 

found in the context of transfer index as well; with significant improvements in the TI values 

after updating the constants of poorly performing naïve transfers. But intuition suggests that if 

the naïvely transferred model performs rather poorly, simply updating the model constants 

doesn’t do the magic of getting things right. As discussed in Section 2, it is the property of the 

MDCEV model structure that updating its constants helps improve the aggregate-level 

predictions, rather than an improvement in the way the model captures behavior in the 

application context. To examine this, the next subsection presents transferability assessment 

based on the ability of the transferred models to forecast changes in activity time-use patterns in 

response to changes in explanatory variables.   

 

6.4 Policy Response Measures 

To assess model transferability based on how the models respond to changes in explanatory 

variables, we used a policy scenario where the age of individuals older than 29 years was 

increased by 10 years (to reflect aging of the population).  Next, each estimated model was 

applied to its estimation sample and all the application context datasets (to which the model was 
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transferred) for both base and policy scenarios. The changes in the time-use patterns (due to the 

policy) were computed at two levels – disaggregate and aggregate.  

At the disaggregate-level, first, for each set of error term draws for each individual, the 

overall change in activity participation and time-use patterns was measured as below.  

1

ˆ ˆ| |1
....................(7)

2

p bK

k k

c

k

t t
T

T 

 
  

 
  

 where, ˆ p

k
t  is the predicted duration for alternative k  in the policy case, and ˆ b

k
t   = predicted 

duration for alternative k  in the base case. Next, the above metric was averaged over all sets of 

error term draws for all individuals.  

 The aggregate-level policy assessment metric is defined as the total absolute change in 

predicted shares for all choice alternatives: 
1

ˆ ˆ

K

p b

k k

k

p p


 , where ˆ
p

k
p  and ˆ

b

k
p  are the predicted 

aggregate shares for alternative k in the policy and base case scenarios, respectively. This metric 

focuses on the discrete (activity participation) component of choice.      

  Table 5 presents the above-discussed metrics, with the values outside the parentheses 

indicating the predicted policy response by the transferred model, and the values inside the 

parentheses indicating the ratio of the same metric with respect to that of a locally estimated 

model. The closer the values in the parenthesis are to 1, the closer is the transferred model’s 

policy response prediction to the corresponding locally estimated model, and therefore, better 

transferability. These results suggest that for both inter-state and intra-state transfers, updating 

constants does not help much in improving the performance of the transferred model (i.e., in 

predicting the policy changes closely to that from a locally estimated model). In some cases, it 

rather seems to deteriorate the performance of the transferred model. These results are quite in 

contrast to the findings from the log-likelihood based (TI) and aggregate prediction-based 

(RMSE and RATE) metrics. While updating constants has been found to provide significant 

improvement in the TI values and aggregate-level prediction (as in many studies), the results 

here suggest that such improvements do not necessarily translate to improvement in the policy 

responses of the transferred model. 

 

6.5 Overall Assessment 

Table 6 presents a summary of the results (for transfers within Florida) from all the 

transferability assessment metrics used in the study except TTS (the TTS anyway rejects the 

hypothesis of transferability in all cases). To gain a better perspective from the results, we define 

four levels of transferability based on the error in the performance of a transferred model in the 

application context (for details, see the notes below Table 6). For each model transferred, the 

level of transferability (1, 2, 3, or 4) is denoted as the superscript for the region where the model 

was transferred from. Also, following Nowrouzian and Srinivasan (7), for each application 

context, the various transferred models are arranged in the descending order of transferability 

defined by the above scheme of categorization in to 4 different levels. For example, based on 

transfer index for naïve transfers, the transferability to rural region of the SEF model is similar to 

that of the CF model (similarity denoted by “~”) but better than (“>”) that of the TB model. Of 

course, the levels are defined based on arbitrarily defined thresholds, but the analyst has to 

determine the acceptable error thresholds to draw broad conclusions on transferability. 

The RATEs suggest that, regardless of the level of transferability of a naively transferred 

model, any transferred model can be improved (to transferability level 1) by simply updating its 
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constants. However, as discussed earlier and can be observed from the last two sets of rows, this 

improvement doesn’t translate to improvement in the level of transferability in terms of the 

ability to provide appropriate policy predictions. Recall that the TI values also improved after 

updating constants, but the improvement for intra-state transfers was not sufficient enough to 

enable jumps in the level of transferability unless the naïve transfer had a rather low TI value. 

The takeaway point here is that updating model constants can help with predicting the observed 

aggregate activity participation and time-use patterns closely, but not necessarily in predicting 

appropriate policy responses. Since updating model constants is a widely used practice to 

transfer models, it is important for model-developers and model-users to be cognizant of this 

issue. 

For any application context, the order of transferability of different transferred models 

does not change (or it doesn’t get reversed) after updating constants. However, the order seems 

to vary by the metric used to assess transferability – specifically between the aggregate 

prediction metrics (RATE) and the disaggregate metrics such as TI and policy responses.  

There is greater correlation between the inferences from TI and policy response-based 

assessment, where as inferences from the aggregate prediction-based metrics tally less with those 

from other metrics. For instance, both TI and policy assessments imply almost similar order of 

transferability of different models (for any application context). Similarly, although TI values 

improved after updating constants, neither TI nor policy assessments suggested significant 

improvement in transferability after updating model constants (except that TI showed significant 

improvement if the naïve transfer has a poor TI value). These findings suggest that greater TI 

value of a naively transferred model is likely to imply better policy response of that model, but 

better neither aggregate prediction of observed patterns nor improvements in the TI after 

updating constants necessarily imply better policy prediction. Thus, future policy response 

assessments should place greater emphasis on log-likelihood based metrics (before updating 

constants) and even greater emphasis on policy response measures.  

Finally, the transferability from urban region models to D1U and Rural regions seems to 

be much lower than transferability between the three major urban region models (SEF, CF, TB). 

Further, the SEF and CF models are more transferable to other regions in Florida than the TB 

model.  

 

7 SUMMARY AND CONCLUSIONS 

This paper presents an empirical assessment of the spatial transferability of person-level activity 

generation and time-use models among different regions in Florida (intra-state transferability) 

and between Florida and California (inter-state transferability). The empirical models are for 

unemployed adults based on the multiple discrete-continuous extreme (MDCEV) structure. An 

examination of the prediction properties of the MDCEV model is provided first, followed by an 

assessment of transferability for two approaches to transferring models – (1) Naïve transfer, and 

(2) Updating model constants. Transferability is evaluated using different measures such as log-

likelihood based measures, aggregate predictive ability, and model sensitivity to changes in 

demographic characteristics.  

The results shed new light on the prediction properties of the MDCEV model that has 

implications to transferability, as well as provide insights into how the model can be improved. 

First, similar to the multinomial logit model, the MDCEV model estimated with only constants, 

when applied to the estimation data, appears to provide accurate aggregate shares of the choice 

of discrete alternatives. This property has implications to model transferability. Specifically, 
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updating the constants of a transferred MDCEV model using data from the application context 

can help improve its aggregate-level discrete choice predictions. Second, the MDCEV model 

appears to under-predict the continuous quantity dimension of choice (activity durations, in the 

current context) for certain choice alternatives (in-home activity) while it over-predicts for other 

alternatives (most of the out-of-home activities). A closer examination of the predictions 

suggested that the asymmetry and the fat right tail of the Gumbel distributions assumed in 

MDCEV is a possible cause, suggesting the need to explore alternative (to Gumbel) 

distributional assumptions for MDC models. 

 The transferability assessment revealed several findings. First, the ability to predict 

aggregate observed patterns is not an adequate measure of transferability. Greater emphasis 

should be placed on disaggregate-level prediction metrics and more importantly policy 

prediction ability. Similar findings were reported in Karasmaa (17) and Nowrouzian and 

Srinivasan (7). Second, updating the constants of a transferred MDCEV model can significantly 

improve its ability to predict aggregate shares in the context to which it is transferred. But this 

does not necessarily translate into an improvement in the transferred model’s ability to provide 

appropriate sensitivities to changes in demographic characteristics and other variables. While 

these results do not argue against updating the model constants, it is important that the 

transferred model must exhibit a minimum level of performance without any updates. Only then 

does it make sense to update its constants. Thus, empirical research should be more focused on 

the development of more transferable models by better capturing the behavior than directly 

utilizing updating methods that simply rely on the mechanics (or mathematical properties) of the 

model to match aggregate predictions. Third, the extent of transferability between different 

regions within a state is greater than that across different states. Thus, whenever possible, 

attempts should be made to transfer models within a state. Within Florida, the transferability 

between urban regions is greater than that from urban to rural region. Specifically, there appears 

to be greater transferability of time-use models between the Southeast Florida and the Central 

Florida regions.  

 The current study can be extended in several ways. First, for inter-state transferability 

assessment, only the models developed at the state-level were considered. It would be useful to 

investigate transferability between specific regions of the two states with similar characteristics 

(e.g., specific urban regions). Second, the scale of the random utility components was assumed to 

be similar across different models. Allowing for scale differences across different regions can 

potentially shed further light on model transferability. Third, all the findings in the current study 

are based on relative transferability assessments. In an absolute sense, we wouldn’t declare the 

transferability of the empirical activity time-use models estimated in this study as unequivocally 

acceptable. Significant improvements can be made to the model specification to enhance 

transferability, provided additional data becomes available on the activity-travel environment 

and accessibility to different activities. Finally, additional empirical assessments are warranted to 

corroborate the conclusions from this study. 
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TABLE 1 Descriptive Statistics of Socio-demographics, Activity Participation and Time Allocation in the Datasets 
 

  California (CA) Florida (FL) SEF CF TB D1U R 

Sample Size 10, 821  8,396 2,088 1,458 1,334 995 757 

Socio-demographic Characteristics 

Male  40.0% 41.8% 41.4% 42.2% 42.6% 42.9% 43.9% 

Age: 18 - 29 years   7.8%   3.1%   3.4%   2.5%   2.5%   3.1%   3.2% 

Age: 30 - 64 years 39.2% 31.9% 29.0% 33.3% 32.8% 26.5% 34.1% 

Age: ≥65 years 53.0% 65.0% 67.7% 64.1% 64.6% 70.4% 62.7% 

Race: White 78.6% 89.8% 84.1% 92.0% 93.0% 94.9% 91.0% 

Race: Black   3.7%   5.6%   7.9%   3.9%   3.7%   2.3%   5.0% 

Race: Other 17.7%   4.6%   8.0%    4.1%   3.4%   2.8%   4.0% 

Driver 85.5% 87.1% 82.7% 90.1% 86.5% 90.4% 87.6% 

Edu.: H.school/low 35.6% 44.0% 39.8% 42.2% 45.2% 43.2% 57.2% 

Edu.:Some College 31.7% 27.5% 26.7% 29.1% 27.6% 27.9% 25.6% 

Edu.:Bach./higher 32.7% 28.4% 33.5% 28.7% 27.2% 28.8% 17.2% 

Income: <25 K 23.4% 29.3% 29.9% 29.0% 31.7% 23.2% 37.6% 

Income: 25-75K 46.1% 49.4% 46.3% 51.1% 49.9% 52.9% 51.0% 

Income: > 75 K 30.5% 21.4% 23.7% 20.0% 18.4% 23.9% 11.4% 

Avg. HH Size 2.5 2.2 2.1 2.1 2.0 2.1 2.1 

Avg. No. of  Drivers 1.8 1.8 1.7 1.7 1.6 1.7 1.7 

Aggregate Activity Participation (% who participated) and Average Duration (among those who participated) 

Activity Types % Part. Duration % Part. Duration % Part. Duration % Part. Duration % Part. Duration % Part. Duration % Part. Duration 

In-home activities 100.0 743.4 100.0 740.3 100.0 729.2 100.0 741.1 100.0 744.2 100.0 729.7 100.0 748.4 

OH-Shopping 42.9 59.7   48.4 55.1   51.0 56.0   49.9 56.5    48.5 51.5   51.0 54.6   48.1 50.3 

OH-Other Main. 24.2 56.7   29.6 50.3   30.6 56.54   30.4  44.4    31.6 45.2   30.7 47.0   30.1 46.6 

OH-Soc./Rec. 23.1 157.3   29.2 126.9   30.5 129.1   30.0 117.5    27.1 131.4   31.3 119.8   28.9 130.3 

OH-Active Rec. 14.1 83.9   20.2 52.9   20.6 49.9   21.9 52.9    21.2 52.0   24.6 61.9   14.7 29.3 

OH-Medical 12.7 80.9   22.5 60.4   24.8 67.4   24.3 50.7    23.4 57.5   24.8 58.6   19.8 65.9 

OH-Eat out 19.4 61.6   24.9 48.5   24.3 47.6   27.2 48.7    24.4 45.5   28.0 50.3   23.8 48.2 

OH-Pick/Drop 13.3 17.9   15.2 15.9   17.0 16.8   16.2 13.6    15.5 16.3   16.0 12.5   12.8 16.5 

OH-Other activities   7.8 34.7     6.1 22.2     5.7 28.3    5.7 14.8      7.0 18.1    5.0 20.5     7.5 16.2 

Avg. No. OH activities 1.6 2.0 2.0 2.1 2.0 2.1 1.9 

 

          * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay,  DIU: Urban area in Florida District1, and R: Rural Florida 
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TABLE 2 Predicted and Observed Activity Participation (% participation) and Duration
1 

 

Predicted and Observed Activity Participation & Duration in individual activities 

    In-home Shopping 
Other 

Maintenance 

Social/ 

Recreational 

Active 

Recreation 
Medical Eat Out 

Pick Up/     

Drop Off 

Other 

Activities 

SEF 
% Participation 100.0 (100.0) 49.2 (51.0) 29.9 (30.6) 29.0 (30.5) 19.1 (20.6) 23.1 (24.8) 22.8 (24.3) 16.0 (17.0) 5.3 (5.7) 

Avg. Duration 688.0 (729.2) 45.4 (28.5) 24.9 (17.1) 48.9 (39.4)   6.7 (10.3) 20.3 (16.7) 17.3 (11.6) 3.7 (2.9) 2.1 (1.6) 

CF 
% Participation 100.0 (100.0) 49.3 (49.9) 30.9 (30.4) 29.1 (30.0) 20.4 (21.9) 23.0 (24.3) 26.2 (27.2) 15.5 (16.2) 5.3 (5.7) 

Avg. Duration 697.0 (741.1) 45.6 (28.2) 22.1(13.5) 43.9 (35.2)   6.8 (11.6) 17.1 (12.3) 20.6 (13.2) 3.5 (2.2) 1.5 (0.8) 

TB 
% Participation 100.0 (100.0) 47.9 (48.5) 31.9 (31.6) 26.3 (27.1) 19.6 (21.2) 22.4 (23.4) 23.6 (24.4) 14.4 (15.5)  6.6 (7.0) 

Avg. Duration 701.4 (744.2) 42.4 (25.0) 22.6 (14.3) 44.2 (35.6)   6.8 (11.0) 17.3 (13.4) 18.1 (11.1) 3.6 (2.5) 2.1 (1.3) 

D1U 
% Participation 100.0 (100.0) 48.3 (51.0) 30.5 (30.7) 30.1 (31.3) 22.7 (24.6) 22.9 (24.8) 26.6 (28.0) 15.1 (16.0) 4.6 (5.0) 

Avg. Duration 688.4 (729.7) 44.3 (27.8) 22.5 (14.4) 46.9 (37.4) 10.1 (15.2) 17.9 (14.5) 21.5 (14.1) 3.0 (2.0) 1.6 (1.0) 

R 
% Participation 100.0 (100.0) 47.9 (48.1) 30.7 (30.1) 29.0 (28.9) 14.1 (14.7) 19.1 (19.8) 23.0 (23.8) 12.1 (12.8) 7.2 (7.5) 

Avg. Duration 706.0 (748.4) 40.4 (24.2) 20.0 (14.0) 48.0 (37.7) 2.7 (4.3) 15.3 (13.1) 18.6 (11.5)  2.9 (2.1) 2.5 (1.2) 

 

           
 1 

Observed shares and durations are in the parentheses 
                 

          * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 

 

  



      Sikder and Pinjari                17 
 

TABLE 3 Transferability Assessment Results: Transfer Index (TI) 

Inter-state Transfer 

       Transferred 

          To   

Transferred  

  From 

California Florida 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

California 1.00 1.00 -1.67 0.80 

Florida -0.67 0.86 1.00 1.00 

Intra-state Transfer 

           Transferred  

                   To 

Transferred  

From 

SEF CF TB D1U R 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

SEF 1.00 1.00 0.53 0.68 0.26 0.59 0.20 0.38 0.12 0.66 

CF 0.59 0.70 1.00 1.00 0.46 0.64 0.17 0.25 0.15 0.76 

TB 0.29 0.41 0.28 0.41 1.00 1.00 -0.06 0.17 -0.11 0.30 

 

                   * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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     TABLE 4 Transferability Assessment Results: Root Mean Square Error (RMSE) & Relative Aggregate Transfer Error (RATE) 

 

Inter-state Transfer 

 

      Transferred  

               To 

Transferred  

From  

California Florida 

 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

  
 D

is
cr

et
e 

C
o

m
p

o
n

en
t 

California 0.07 (1.00) 0.07 (1.00) 0.23(5.75) 0.04 (1.00) 

Florida 0.25 (3.35) 0.07 (1.00) 0.04 (1.00) 0.04 (1.00) 

C
o

n
ti

n
u
o

u
s 

C
o

m
p

o
n

en
t 

California 0.17 (1.00) 0.17 (1.00) 0.33 (1.57) 0.21 (1.00) 

Florida 0.24 (1.41) 0.17 (1.00) 0.21 (1.00) 0.21 (1.00) 

 

Intra-state Transfer 

 

   Transferred  

           To  

Transferred  

From  

SEF CF TB D1U R 

 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

Naïve          

Transfer 

Updated 

Constants 

D
is

cr
et

e 

C
o

m
p

o
n

en
t 

 SEF 0.03(1.00) 0.03(1.00) 0.04(1.00) 0.04(1.00) 0.07(2.33) 0.03(1.00) 0.06(1.50) 0.04(1.00) 0.08(4.00) 0.03 (1.50) 

CF 0.04(1.33) 0.04(1.33) 0.04(1.00) 0.04(1.00) 0.04(1.33) 0.04(1.33) 0.04(1.00) 0.04(1.00) 0.06(3.00) 0.02(1.00) 

TB 0.05(1.67) 0.03(1.00) 0.06(1.50) 0.04(1.00) 0.03(1.00) 0.03(1.00) 0.08(2.00) 0.04(1.00) 0.06(3.00) 0.02(1.00) 

C
o

n
ti

n
u
o

u
s 

C
o

m
p

o
n

en
t SEF 0.11(1.00) 0.11(1.00) 0.31(1.94) 0.16(1.00) 0.31(1.80) 0.18(1.05) 0.28(2.13) 0.15(1.15) 0.22(2.00) 0.10 (0.90) 

CF 0.16(1.41) 0.14(1.20) 0.16(1.00) 0.16(1.00) 0.18(1.05) 0.17(1.00) 0.15(1.15) 0.15(1.15) 0.18(1.66) 0.16(1.48) 

TB 0.17(1.48) 0.15(1.31) 0.16(1.00) 0.14(0.87) 0.17(1.00) 0.17(1.00) 0.13(1.00) 0.15(1.15) 0.16(1.48) 0.15(1.39) 

               

              * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
               

              * The values outside the parentheses indicate absolute RMSE while the values within the parentheses indicate relative RMSE with respect to a locally estimated model (RATE) 
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TABLE 5 Transferability Assessment Results: Disaggregate and Aggregate Policy Response Measures 

 

Inter-state Transfer 

 

        Transferred                                   

                     To 

Transferred 

 From 

California Florida 

 

Naïve Transfer Updated Constants Naïve Transfer Updated Constants 

P
o

li
cy

 R
es

p
o
n

se
 

D
is

ag
g

re
g

at
e 

California 4.88(1.00) 4.88(1.00) 4.86(1.64) 5.54(1.87) 

Florida 2.46(0.50) 2.57(0.53) 2.96(1.00) 2.96(1.00) 

A
g

g
re

g
at

e 

California 4.72(1.00) 4.72(1.00) 4.68(1.31) 6.74(1.88) 

Florida 3.70(0.78) 2.68(0.57) 3.58(1.00) 3.58(1.00) 

 

Intra-state Transfer 

 

     Transferred  

      To 

Transferred  

From  

SEF CF TB D1U R 

 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

Naïve 

Transfer 

Updated 

Constants 

 

P
o

li
cy

 R
es

p
o
n

se
 

D
is

ag
g

re
g

at
e SEF 2.25(1.00) 2.25(1.00) 2.57(1.58) 2.20(1.36) 2.50(0.51) 2.20(0.45) 2.21(0.55) 1.90(0.47) 2.71(2.22) 2.14(1.74) 

CF 1.42(0.63) 1.48(0.66) 1.62(1.00) 1.62(1.00) 1.50(0.31) 1.33(0.27) 1.37(0.34) 1.37(0.34) 1.65(1.35) 1.51(1.23) 

TB 4.90(2.18) 5.18(2.30) 5.36(3.31) 5.36(3.31) 4.88(1.00) 4.88(1.00) 5.52(1.36) 5.75(1.42) 5.32(4.35) 5.31(4.34) 

A
g

g
re

g
at

e 

SEF 3.15 (1.00) 3.15(1.00) 3.42(1.36) 3.24(1.31) 3.33(0.65) 3.15(0.61) 3.24(2.49) 3.06(2.35) 3.69(2.54) 2.88(1.96) 

CF 2.43(0.77) 2.52(0.79) 2.52(1.00) 2.52(1.00) 2.43(0.47) 1.35(0.26) 2.07(1.60) 
   

2.07(1.60) 
2.70(1.84) 2.25(1.52) 

TB 5.31(1.69)    5.49(1.74) 5.94(2.38)   6.12(2.46) 5.13(1.00) 5.13(1.00) 6.12(4.78)  6.3(4.92) 5.67(3.88) 5.31(3.63) 

 

            * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 
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          TABLE 6 Overall Transferability Assessment Results 
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 * Superscripts 

                       Level 1: less than 25% error - Transfer Index (0.75 –1.00), RATE (1.00 –1.25), Policy Response Ratio (0.75 –1.00 ~1.00 –1.25) 

                       Level 2: 25% - 50% error - Transfer Index (0.50 – 0.74), RATE (1.26 –1.50), Policy Response Ratio (0.50 – 0.74 ~ 1.26 –1.50) 

                       Level 3: 50% - 100% error - Transfer Index (0.00 – 0.49), RATE (1.51 –2.00), Policy Response Ratio (0.00 – 0.49 ~ 1.51 –2.00)                    

                       Level 4: >100% error - Transfer Index (< 0.00), RATE (>2 .00), Policy Response Ratio (>2.00)  

  * Signs  

                   “~” - Transferability of one model is similar to that of the other model 

                    “>”-Transferability of one model is better than that of the other model 

                    “>>”-Transferability of one model is far better than that of the other model 

 * SEF: Southeast Florida, CF: Central Florida, TB: Tampa Bay, DIU: Urban area in Florida District1, and R: Rural Florida 


