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ABSTRACT 
This paper investigates the benefits of incorporating heteroscedastic stochastic distributions in random 

utility maximization-based multiple discrete-continuous (MDC) choice models. To this end, first, a Multiple 

Discrete-Continuous Heteroscedastic Extreme Value (MDCHEV) model is formulated to allow 

heteroscedastic extreme value stochastic distributions in MDC models. Next, an empirical analysis of 

individuals’ daily time use choices is carried out using data from the National Household Travel Survey 

(NHTS) for three geographical regions in Florida. A variety of different MDC model structures are 

estimated: (a) the Multiple Discrete-Continuous Extreme Value (MDCEV) model with independent and 

identically distributed (IID) extreme value error structure, (b) the MDCHEV model, (c) the mixed-MDCEV 

model that allows heteroscedasticity by mixing a heteroscedastic distribution over an IID extreme value 

kernel, (d) the MDC generalized extreme value (MDCGEV) model that allows inter-alternative correlations 

using the multivariate extreme value error structure, (e) the mixed-MDCEV model that allows inter-

alternative correlations using common mixing distributions across choice alternatives, and (f) the mixed-

MDCEV model that allows both heteroscedasticity and inter-alternative correlations. Among all these 

model structures, the MDCHEV model provided the best fit to the current empirical data. Further, 

heteroscedasticity was prominent while no significant inter-alternative correlations were found. 

Specifically, the MDCHEV parameter estimates revealed the significant presence of heteroscedasticity in 

the random utility components of different activity type choice alternatives. On the other hand, the 

MDCEV model resulted in inferior model fit and systematic discrepancies between the observed and 

predicted distributions of time allocations, which can be traced to the thick right tail of the type-1 extreme 

value distribution. The MDCHEV model addressed these issues to a considerable extent by allowing 

tighter stochastic distributions for certain choice alternatives, thanks to its accommodation of 

heteroscedasticity among random utility components. Further, spatial transferability assessments using 

different transferability metrics also suggest that the MDCHEV model clearly outperformed the MDCEV 

model. 

 

 

Keywords: discrete-continuous choice models, multiple discreteness, heteroscedasticity, distributional 

assumptions, time use behavior, spatial transferability 
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1 INTRODUCTION 
1.1 Background 
Numerous consumer choices are characterized by “multiple discreteness” where consumers can 

potentially choose multiple alternatives from a set of discrete alternatives available to them. Along with 

such discrete-choice decisions of which alternative(s) to choose, consumers typically make continuous-

quantity decisions on how much of each chosen alternative to consume. Such multiple discrete-

continuous (MDC) choices are being increasingly recognized and analyzed in a variety of scientific fields, 

including transportation, environmental economics, and marketing. Examples include: (1) individuals’ 

daily time-use choices, which involve decisions to engage in different types of activities in a day along 

with the allocation of available time to each activity, (2) households’ recreational destination choices and 

time allocation to the chosen destinations over a season, and (3) grocery shoppers’ brand choice and 

purchase quantity decisions. 

  A variety of approaches have been used in the literature to model MDC choices. Among these, a 

particularly attractive approach is based on the classical microeconomic consumer theory of constrained 

utility maximization. Specifically, consumers are assumed to optimize a direct utility function ( )U x  over a 

set of non-negative consumption quantities 1( ,..., ,..., )k Kx x x=x  subject to a linear budget constraint, 

as: 

                     Max ( )U x such that . y=xp  and 0 1,2,...,kx k K≥ ∀ =                        (1)  

In the above Equation,  is a quasi-concave, increasing and continuously differentiable utility function 

with respect to the consumption quantity vector x ,  is a vector of unit prices for all goods, and y is a 

budget for total expenditure. An increasingly popular approach for deriving the demand functions from the 

utility maximization problem in Equation (1), due to Hanemann (1978) and Wales and Woodland (1983), 

is based on the application of Karush-Kuhn-Tucker (KKT) conditions of optimality with respect to the 

consumption quantities. Since the utility function is assumed to be randomly distributed over the 

population, the KKT conditions are also randomly distributed and form the basis for deriving the 

probability expressions for consumption patterns.  

 Over the past decade, the above-discussed KKT approach has received significant attention for 

the analysis of MDC choices. A stream of research in environmental economics (Phaneuf et al., 2000; 

von Haefen et al., 2004; von Haefen and Phaneuf, 2005; Phaneuf and Smith, 2005; Vasquez-Lavin and 

Hanemann, 2009) advanced the approach to model individuals’ recreational demand choices for non-

market valuation of environmental goods. Several studies in marketing research (Kim et al., 2002; 

Satomura et al., 2011) employed the approach to model situations when consumers purchase a variety of 

brands of a product (e.g., yogurt). In the transportation field, the multiple discrete-continuous extreme 

value (MDCEV) model formulated by Bhat (2005) and enlightened further by Bhat (2008) lead to an 

increased use of the KKT approach for analyzing a variety of choices, including individuals’ activity 

participation and time-use (Bhat 2005; Habib and Miller, 2008; Pinjari et al., 2009; Chikaraishi et al., 2010; 

( )U x

p
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You et al., 2013), household vehicle ownership and usage (Ahn et al., 2008; Bhat et al., 2009; Jaggi et 

al., 2013), long-distance leisure destination choices (Van Nostrand et al., 2013), energy consumption 

choices (Pinjari and Bhat, 2011; Frontuto, 2011; Yu et al., 2012) and builders’ land-development choices 

(Kaza et al., 2012; Farooq et al., 2013). Clever use of stochastic specifications has led to model 

formulations with closed-form likelihood expressions. Specifically, consider an additive utility form, as 

below: 

( )1
1 1

( ,..., ) ( ) ( ),
K K

K k k k
k k

U x x U x f u x ε
= =

= =∑ ∑            (2) 

In the above equation, ( )kU x  is a random sub-utility function for good k, representing the utility derived 

from consuming kx  amount of good k, and expressed as a combination of a deterministic component 

( )ku x  and a random component kε  as: ( )( ) ( ),k k kU x f u x ε= . Assuming that the random components 

( kε ) enter the sub-utility functions ( )kU x  in a multiplicative fashion, as ( ) ( ) k
k kU x u x eε= × , and are 

type-1 extreme value and independent and identically distributed (IID) across the choice alternatives 

leads to a very simple and elegant consumption probability expression (Bhat, 2005) making it easy for 

parameter estimation. In addition, computationally efficient procedures are now available for using these 

model systems for forecasting and policy evaluation (see von Haefen et al., 2004; and Pinjari and Bhat, 

2011). Thanks to these advances, KKT-based MDC models are being increasingly used in empirical 

research and have begun to be used in operational travel forecasting models. 

 

1.2 Gaps in Literature Relevant to this Paper 
Recent research in this area has started to enhance the basic formulation in Equation (1) along three 

specific directions: (a) toward more flexible, non-additively separable functional forms for the utility 

specification so as to accommodate rich complementarity and substitution patterns in consumption 

(Vasquez-Lavin and Hanemann, 2009; Bhat et al., 2013a), (b) toward greater flexibility in the specification 

of the constraints faced by the consumer, such as multiple linear budget constraints as opposed to a 

single constraint (Satomura et al., 2011; Castro et al., 2012; Pinjari and Sivaraman, 2013), and (c) toward 

more flexible stochastic specifications for the random utility functions. The reader is referred to Pinjari et 

al. (2013) for a more detailed discussion of recent advances along the first two directions. 

Within the context of stochastic specifications in KKT models, recent work has been geared 

toward relaxing the IID assumption of random utility components, in the following ways: (1) the 

specification of multivariate extreme value (MEV) distributions as opposed to IID extreme value 

distributions, which leads to the multiple discrete-continuous generalized extreme value (MDCGEV) 

structure (Pinjari and Bhat, 2010; Pinjari, 2011); (2) the specification of multivariate normal (MVN) 

distribution, which leads to the multiple discrete-continuous probit (MDCP) structure (Kim et al., 2002; 

Bhat et al., 2013b), and (3) the specification of additional error components mixed over an IID extreme 
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value distributed kernel, which leads to the mixed-MDCEV structure (Bhat, 2005; Bhat and Sen, 2006; 

Spissu et al., 2009; Chikaraishi et al., 2010).  

A number of the efforts to relax the IID assumption have been in the context of relaxing the 

independently distributed assumption, by allowing correlations between the random utility components of 

different choice alternatives (either by employing the MEV or MVN distributions or by employing the 

mixed-MDCEV structure). Such correlations help in accommodating flexible substitution patterns between 

the consumptions of different choice alternatives (Pinjari and Bhat, 2010). In addition, positive correlations 

between alternatives can capture the possibility that the consumptions of groups of alternatives can be 

complementary to each other in that an increase in the consumption of one alternative increases the 

consumption of other alternatives.   

A handful of studies relax the identically distributed assumption by allowing for inter-alternative 

variations in the stochastic distributions (i.e., heteroscedastic distributions). Specifically, Bhat and Sen 

(2006) use the mixed-MDCEV structure to accommodate heteroscedasticity across choice alternatives. 

Spissu et al. (2009) also use the mixed-MDCEV structure, albeit with panel data, to accommodate 

variations in the influence of unobserved factors within and across individuals (i.e., inter-individual and 

intra-individual variations). In another notable study, Chikaraishi et al. (2010) use the mixed-MDCEV 

structure to accommodate variations in unobserved influences at multiple levels, including intra-individual 

variation, inter-individual variation, inter-household variation, and temporal and spatial variation. Both 

Spissu et al. (2009) and Chikaraishi et al. (2010) allow for the unobserved variations to be different across 

the different choice alternatives, thereby allowing for heteroscedasticity across choice alternatives. In all 

these studies, the primary reason for accommodating heteroscedasticity across choice alternatives is to 

recognize the differences in the variation of unobserved influences on the preferences for different choice 

alternatives. As often cited in the literature, doing so helps in improving the model fit to the data as well as 

accommodates the influence of heteroscedastic random variance on the elasticity effects of alternative 

attributes. For instance, the self-price elasticity estimate of a choice alternative is dampened by the 

variance in its random utility component (Bhat and Sen, 2006). However, what has been unknown (and 

unexplored) so far is the potential influence of heteroscedasticity across choice alternatives on the 

distributions of the consumptions implied by a KKT demand system such as the MDCEV model. It is this 

specific aspect that the current paper contributes to. 

Another line of recent research has been on evaluating the predictions obtained from KKT-based 

MDC models. A first step in this direction is the study by Jaggi et al. (2013) who analyzed the residuals 

between observed consumptions in the estimation data and predicted consumptions (on the same data) 

using the MDCEV model. In a recent study, Sikder and Pinjari (2013) compared the predictions from the 

MDCEV model with those observed in the estimation data. Their empirical analysis reveals both strengths 

and weakness of the MDCEV formulation in predicting the aggregate-level discrete choices and 

continuous consumption quantities in the context of individuals’ daily time-use decisions. Specifically, they 

reported that the MDCEV model performs very well in predicting the aggregate-level discrete choices 
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observed in the estimation data (i.e., the market shares for each choice alternative). However, the 

continuous consumption quantities (i.e., daily time allocations) were reported to have been overestimated 

for certain alternatives and underestimated for other alternatives, when compared to the average 

consumptions in the estimation data. Alluding to the possibility that this problem could be attributed to the 

fat right tail of the extreme value distributions assumed in the MDCEV model, Sikder and Pinjari (2013) 

identify a research need to explore alternative distributional assumptions to overcome the issue. In the 

current paper, we explore the benefits of incorporating heteroscedasticity in the stochastic distributions 

across different choice alternatives in addressing the afore-mentioned prediction related issues of the 

MDCEV model. 

Both the mixed-MDCEV and MDCP approaches can be used to relax the assumption of 

identically distributed errors. The advantage of both these approaches is that they are very general; the 

analyst can allow for correlated and non-identically (or heteroscedastically) distributed random utility 

terms simultaneously, while also allowing random coefficients on explanatory variables and recognizing 

correlations across observations. However, both the approaches have their own drawbacks. The 

likelihood function of the mixed-MDCEV formulation for allowing heteroscedasticity is a multidimensional 

integral of as many dimensions as the number of heteroscedastic choice alternatives. The dimensionality 

of the integral increases further when other features such as inter-alternative correlations and random 

coefficients are incorporated (along with heteroscedasticity) using the mixed-MDCEV approach. This 

integral cannot be evaluated analytically and necessitates the use of computationally intensive simulation 

techniques as the dimensionality of integration increases beyond a modest number. The typically used 

approach to estimating the mixed-MDCEV models is the maximum simulated likelihood (MSL) method, 

where the likelihood is simulated using pseudo-Monte Carlo or quasi-Monte Carlo simulation. The 

desirable asymptotic properties of the MSL estimator come with a computational cost, because the 

number of simulation draws ought to rise faster than the square root of the number of observations in the 

estimation sample. As widely noted in the literature (Train, 2009), the accuracy of such simulation 

techniques degrades quickly at high dimensions of integration unless a large number of simulation draws 

are used. Even if using a large number of draws is not impossible, it certainly increases the model 

estimation time thereby discouraging the analyst from exploring a variety of alternative empirical 

specifications. Another important issue that has not received due attention in the literature (but see Bhat, 

2011) is the accuracy of the covariance matrix of the MSL estimator (not just the accuracy of the simulator 

itself), which is important for good statistical inference. As stated in Bhat (2011), simulating the log-

likelihood function with even three to four decimal places of accuracy in the probabilities might not be 

sufficient for an accurate estimation of the covariance matrix of the MSL simulator. The implication is that 

the likelihood function needs to be simulated with a very high level of accuracy and precision (Bhat, 

2011), which further increases the computational intensity. Finally, another drawback with the simulation 

methods is that parameter (un)identification issues arise quickly when the number of random coefficients 

to be estimated increases beyond a modest number. Suffice it to say that while the mixed-MDCEV 
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approach is valuable for simultaneously allowing a variety of features such as inter-alternative 

correlations and heteroscedasticity, it is worth incorporating these features using techniques that help 

reduce the dimensionality of integration in the likelihood function. For example, the MDCGEV structure 

(Pinjari, 2011) can be used to allow inter-alternative correlations while retaining the closed-form of the 

likelihood expressions. Along similar lines, it would be useful to explore a simpler approach to 

incorporating heteroscedasticity in MDC models. One possibility of doing so, as discussed in the next 

section, is to use heteroscedastic extreme value (HEV) distributions in lieu of the homoscedastic extreme 

value distributions used in the MDCEV model.  

As mentioned earlier, the MDCP approach can also be used to allow heteroscedasticity. The 

MDCP approach, similar to the mixed-MDCEV approach, leads to multi-dimensional integrals (in the 

likelihood function) that are not analytically tractable. An advantage of this approach is that the 

dimensionality of integration is always equal to one less than the number of choice alternatives, 

regardless of the number of random parameters and the presence of heteroscedasticity and inter-

alternative correlations. This property is advantageous for situations with small to medium number of 

choice alternatives. The MDCP models are typically estimated using the GHK simulator to evaluate the 

integral appearing in the likelihood function (see Kim et al., 2002). However, in addition to being 

computationally intensive, the GHK simulator is not easy to implement, a reason why most analysts resort 

to the mixed-MDCEV approach. More recently, Bhat et al. (2013b) demonstrated the benefits of an 

analytic approximation method to evaluate the integrals in the MDCP structure. This development might 

make it simpler to use MDCP models in empirical research. 

 

1.3 Current Research 
In view of the above discussed gaps in the literature, the primary objective of this paper is to investigate 

the benefits of incorporating heteroscedastic stochastic distributions in KKT-based MDC choice models. 

To this end, we first formulate a Multiple Discrete-Continuous Heteroscedastic Extreme Value (MDCHEV) 

model that employs heteroscedastic extreme value (HEV) distributed random utility components in KKT-

based MDC models. The HEV distribution was originally used by Bhat (1995) for modeling single discrete 

choice situations. One advantage of the proposed MDCHEV approach over the other two approaches 

(i.e., mixed-MDCEV and MDCP) is that the resulting likelihood function is a uni-dimensional integral that 

can be easily and accurately evaluated using quadrature methods; a reason why Bhat (1995) used it. 

Note, however, that the MDCHEV structure does not accommodate either inter-alternative correlations or 

random coefficients on explanatory variables. As discussed earlier, the mixed-MDCEV and the MDCP 

approaches are more general than the MDCHEV as they can simultaneously accommodate 

heteroscedasticity, inter-alternative correlations, and random coefficients. In practice, however, it can be 

very difficult to empirically identify a large number of random parameters needed to accommodate all 

these different features in the mixed-MDCEV model, especially with cross-sectional datasets. To 

overcome this issue, one can potentially formulate a mixed-MDCHEV model that superimposes a mixing 
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distribution over a HEV kernel to accommodate inter-alternative correlations and random coefficients 

along with heteroscedasticity. Alternatively, one can conceive of a mixed-MDCHGEV model that is based 

on a heteroscedastic generalized extreme value (HGEV) kernel to allow both heteroscedasticity and inter-

alternative correlations, and superimposes a mixing distribution over the HGEV kernel to allow random 

coefficients. However, these extensions as well as the MDCP approach are beyond the scope of this 

paper.1  

In addition to the formulation of the MDCHEV model, an empirical analysis is presented in the 

context of modeling individuals’ daily time-use choices using data from the 2009 National Household 

Travel Survey (NHTS) from Florida. The empirical analysis proceeds in two stages. In the first stage, a 

series of model estimations are carried out to select the best fitting MDC model structure for the current 

empirical data. Specifically, the following six different model structures are estimated: (1) The MDCEV 

model with IID extreme value stochastic distributions, (2) The mixed-MDCEV model to accommodate 

heteroscedasticity across choice alternatives, (3) The MDCHEV model, (4) The mixed MDCEV model to 

accommodate inter-alternative correlations, (5) The MDCGEV model to incorporate inter-alternative 

correlations using closed-form probability expressions, and (6) The mixed-MDCEV model to 

accommodate both inter-alternative correlations and heteroscedasticity. As will be revealed in the 

empirical results section, in the current empirical context, inter-alternative correlations were not significant 

but heteroscedasticity was prominent. Further, among all the above six model structures, the MDCHEV 

structure provided the best fit to the data, with goodness-of-fit measures far better than the mixed-

MDCEV structure. In the second stage, we focus on assessing the benefits of incorporating 

heteroscedastic stochastic distributions in the context of modeling individuals’ daily time-use choices. 

Considering the findings in the first stage of the empirical analysis, we compare the prediction 

performance of the MDCEV and MDCHEV model structures. In these comparisons, we first demonstrate 

that the distributions of the MDCEV-predicted continuous quantity decisions for certain choice alternatives 

can potentially have longer right tails than the observed distributions; implying overestimation of the 

continuous quantity predictions for those choice alternatives. We discuss how this problem is related to 

the fat right tail of the IID extreme value distributions assumed in the MDCEV model. We also 

demonstrate empirically that allowing for heteroscedasticity through the MDCHEV model helps in 

addressing this problem to a considerable extent. This is because the heteroscedastic model results in 

smaller variances (hence tighter distributions) for the random utility components of the choice alternatives 

for which the MDCEV model over-predicts the continuous quantity choices. Such tightly distributed 

random utility components, as will be demonstrated later in the paper, reduce the probability of 

unreasonably large continuous quantity predictions. In addition to comparing the in-sample prediction 

performance of the MDCEV and MDCHEV models, we also compare the out-of-sample prediction 

                                                            
1  In this context, we identify the following potentially fruitful avenues for future research: (1) Exploration of the pros 
and cons of alternative approaches (e.g., mixed-MDCEV, MDCP, and mixed-MDCHGEV) to simultaneously 
accommodate inter-alternative correlations, heteroscedasticity, random coefficients, and (2) Assessment of the 
relative importance of each of these unobserved effects in different empirical contexts. 
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performance by assessing the spatial transferability of the models among different geographical regions 

in Florida. 

The remainder of the paper is organized as follows. The next section presents the structure of the 

MDCHEV model and outlines the estimation procedure. Section 3 overviews the empirical data and 

geographical contexts considered for the empirical analysis. Section 4 presents the empirical results. 

Section 5 summarizes and draws conclusions from the paper. 

 

2 THE MDCHEV MODEL  
2.1 Model Formulation 
Consider the following random utility function proposed by Bhat (2008) for modeling multiple discrete-

continuous choice situations: 

    ( )( ){ }1 1
2

( ) ln ln / 1
K

k k k k
k

U t tψ ψ γ γ
=

= + +∑t                                      (3)                          

In the above function, ( )U t  is the total utility derived by an individual from his/her daily time-use. It is the 

sum of sub-utilities derived from allocating time ( kt ) to each of the activity types k (k =1, 2,…,K). 

Individuals are assumed to make their activity participation and time-use decisions such that they 

maximize ( )U t  subject to a linear budget constraint kk
t T=∑ , where T is the total available time 

budget. Note that the subscript for the individual is suppressed for simplicity in notation. 

Within the utility function in Equation (3), kψ , called the baseline marginal utility for alternative k, 

is the marginal utility of time allocation to activity k at the point of zero time allocation. kψ  governs the 

discrete choice decisions in that an activity type with greater baseline marginal utility is more likely to be 

chosen than other activities. kγ  accommodates corner solutions (i.e., the possibility of not choosing an 

alternative). Both kψ  and kγ  accommodate differential satiation effects (diminishing marginal utility with 

increasing consumption) for different activity types. Thus, both these parameters influence the time 

allocation decisions. Specifically, a greater value of either kψ  or kγ  implies a larger allocation of time to 

the corresponding activity. Note that the 1st alternative, designated as in-home activity, does not have a 

kγ  parameter since all individuals in the data allocate some time to the in-home activity (i.e., there is no 

need of corner solutions for this activity). From now on, this alternative will be called the outside good, 

while all other activities (out-of-home activities) are called inside goods.2 

                                                            
2 The outside good is a composite good that represents all goods other than the K-1 inside goods of interest to the 
analyst. The presence of the outside good helps in ensuring that the budget constraint is binding. Besides, the 
outside good helps in endogenously determining the total resource allocation for (or total consumption of) inside 
goods. It is not uncommon to treat the outside good as a numeraire with unit price, assuming that the prices and 
characteristics of the goods grouped into the outside category do not influence the choice and resource allocation 
among the inside goods (see Deaton and Muelbauer 1980). While the current empirical context is such that the 
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  The influence of observed and unobserved individual characteristics and activity-travel 

environment (ATE) measures are accommodated into the utility function as 1 1exp( );ψ ε=  

exp( ' );k k kzψ β ε= +  and exp( );k kwγ θ′=  where,  kz  and kw  are observed socio-demographic and 

ATE measures influencing the choice of and time allocation to activity k, β  and θ  are corresponding 

parameter vectors, and kε  (k=1,2,…,K) is the random error term capturing unobserved and unmeasured 

influences on the utility contribution of time allocation in activity type k. Note that 1ψ  does not include any 

observed explanatory variables as the coefficients of all explanatory variables for this alternative are 

normalized to zero for identification purposes. 

 To obtain the optimal time allocations ( * * *
1 2, ,..., Kt t t ), one can form the Lagrangian and derive the 

Karush-Kuhn-Tucker (KKT) conditions of optimality (Bhat 2008). The Lagrangian function for the utility 

function and budget constraint considered in this study is 

                                       L  ( )( ){ }1 1
2 1

ln ln / 1
K K

k k k k k
k k

t t t Tψ ψ γ γ λ
= =

⎡ ⎤
= + + − −⎢ ⎥

⎣ ⎦
∑ ∑                       (4) 

where λ  is the Lagrangian multiplier associated with the budget constraint. The KKT conditions of 

optimality are: 

                                                 1 1k kV Vε ε+ = +  if * 0, ( 2,3,...., )kt k K> =   

                                              1 1k kV Vε ε+ < +  if * 0, ( 2,3,...., )kt k K= =                                     (5)                                 

                          where, ( )*
1 1ln ,V t=  and ( )( )*ln / 1 , ( 2,3......, )k k k kV z t k Kβ γ′= + + =   

The above stochastic KKT conditions form the basis for the derivation of likelihood expressions. 

In the general case, if the joint probability density function of the kε  terms is 1 2( , ,..., )kg ε ε ε , and if M

alternatives are chosen out of the available K  alternatives, and if the consumptions of these M  

alternatives are * * * *
1 2 3( , , ,..., )Mt t t t , as given in Bhat (2008), the joint probability expression for this 

consumption pattern is as follows:  

1 1 1 1 11 1 1

1 1 1

* * * *
1 2 3

1 1 2 1 1 3 1 1 1 1 2 1

1 2 1 1

( , , , ..., 0, 0, 0..., 0)

.. ( , , , ..., , , , ..., , )

...

k kM

M k k

M

V V V VV V

M M M K K

k k M M

P t t t t

J g V V V V V V

d d d d d

ε εε

ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε

−+

+ −

− + − +− ++∞

+ + −
=−∞ =−∞ =−∞ =−∞

− + +

=

− + − + − +∫ ∫ ∫ ∫  

     (6) 

                                                                                                                                                                                                
outside good is an essential good (where all individuals consume some amount of it), it is not always necessary for 
the outside good to be specified as an essential good. 
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where J  is the determinant of a Jacobian whose elements are given by (see Bhat, 2005)  

                                  
[ ] [ ]

* *

1 1 1 1 1

1 1

; , 1,2,..., 1i i
ih

h h

V V V V
J i h M

t t
ε+ +

+ +

∂ − + ∂ −
= = = −

∂ ∂                                (7)                                

For the MDCHEV model, we assume that the random components in the baseline marginal 

utilities of different choice alternatives are independent but heteroscedastically extreme value (HEV) 

distributed. Specifically, the random error term kε  of each alternative k  ( 1,2,3,...., )k K=  is assumed to 

have a type-1 extreme value distribution with a location parameter equal to zero and a scale parameter 

equal to kσ . With the HEV distribution, the probability expression in Equation (6) becomes:  

1

1

1 1* * * 1 1 1 1
1 2

2 1 1 1

1( , ,..., ,0,...,0)
M K

j s
M

j s Mj j s

V V V VP t t t J g G g d
ε

ε

ε ε ε ε
σ σ σ σ σ

=+∞

= = +=−∞

⎧ ⎫⎛ ⎞⎡ ⎤ ⎧ ⎫− + ⎡ ⎤ ⎛ ⎞ ⎛ ⎞− +⎪ ⎪ ⎪ ⎪= × ×⎜ ⎟⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎪ ⎪⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪ ⎩ ⎭⎣ ⎦⎝ ⎠⎩ ⎭
∏ ∏∫       

      (8) 

where g(.) and G(.) are the probability density function and cumulative distribution function, respectively, 

of the standard type I extreme value distribution; Specifically, ( )
ww eg w e e

−− −=  and ( )
weG w e

−−= . If the 

scale parameters kσ  across all alternatives are assumed to be equal, then the above expression 

simplifies to the closed-from MDCEV model derived by Bhat (2005). 

 

2.2 Model Estimation 
The parameters of the MDCHEV model can be estimated using the familiar maximum likelihood 

procedure. However, there is no analytical form for the integral appearing in the probability expression of 

Equation (8), which enters the likelihood function. In this paper, we employ the Laguerre Gaussian 

Quadrature (Press et al., 1986) to compute the integral. To do so, define 1

1

w ε
σ

=  and wu e−= . These 

two equations can be combined to write 1 1 lnuε σ= − . Further, ( )w wdu d e e
dw dw

− −= = −  or wdw e du= −

. Now, the term 1 1

1 1

g dε ε
σ σ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

in Equation (8) can be written as ( )g w dw , which can further be 

expanded as 
ww ee e dw

−− − . Substituting we du−  for dw  and u  for we− , one can write

1 1

1 1

ug d e duε ε
σ σ

−⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. Finally, substituting 1 ln uσ−  for 1ε  and ue du−−  for 1 1

1 1

g dε ε
σ σ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, the 

probability expression in Equation (8) can be re-written as follows:   
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ln ln1( )
M K

j s

j s Mj j s

V V u V V uf u g G
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∏ ∏  

According to the Laguerre Gaussian Quadrature technique, the integral of the form in Equation (9) can be 

approximated as a summation of terms over a certain number ( I ) of support points as follows:  

                                           
10

( ) ( )
I

u
i i

iu

f u e du w f u
∞

−

==

≈∑∫                                                 (10) 

where, i  is the support point at which the function ( )if u  is evaluated (support points are the roots of the 

Laguerre polynomial of order I) and iw  is the weight or probability mass associated with support point i  

(see Press et al., 1986). Since the integral being evaluated is uni-dimensional, the quadrature method is 

computationally efficient and accurate. In this paper, preliminary tests suggested that increasing the 

number of support points (I) beyond 15 did not increase the accuracy of the integral or influence the final 

model results (log-likelihood function value and parameter estimates). Therefore, all estimations of 

MDCHEV models were performed using 15 support points to evaluate the integral in the likelihood 

function. The likelihood function was coded in the maximum likelihood estimation module of the GAUSS 

matrix programming language.  

Note that, since there is no variation in the prices of unit consumption of different activity 

alternatives in the current empirical context, for identification purposes, at least one of the scale 

parameters need to be fixed to an arbitrary value (Bhat, 2008). It is convenient to fix the scale parameter 

of the essential outside good (in-home activity) to 1. Therefore, the interpretation of all other scale 

parameters would be in reference to that of the outside good. Specifically, a kσ  value less (greater) than 

1 implies that the unobserved variation in utility derived from time investment in activity type k is smaller 

(larger) than that in the in-home activity. 

 

3 DATA 
The primary data source used for the empirical analysis is the 2009 National Household Travel Survey 

(NHTS) for the state of Florida. The survey collected detailed information on all out-of-home travel 

undertaken by the respondents in a day, including the purpose, mode of travel, start and end time, and 

the dwell time (i.e., time spent) at the destination of all trips made in the day. This information was used to 

define eight out-of-home (OH) activity categories: (1) Shopping, (2) Other maintenance (buy services), (3) 

Social/Recreational (visit friends/relatives, go out/hang out, visit historical sites, museums and parks), (4) 

Active recreation (working out in gym, exercise, and playing sports), (5) Medical, (6) Eat out (such as 
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meal, coffee, and ice cream) (7) Pickup/drop-off, and (8) Other activities. For each individual, the daily 

time-allocation to each of these activity categories was derived by aggregating the dwell time of each trip 

made for that activity purpose. The time spent in in-home (IH) activities was computed as total time in a 

day (24 hours) minus the time allocated to the above out-of-home activities, sleep, and travel. Based on 

the information from the 2010 American Time Use Survey (ATUS) for Florida, an average amount of 8.7 

hours was assumed for sleep. For each individual in the data, the time spent in in-home activities and in 

all out-of-home activities together forms the available time budget (T) for subsequent analysis. 

The demographic segment of focus in this study is unemployed adults (age >18 years) with 

survey information on weekdays. Further, the current empirical analysis focused on the following three 

geographical regions in Florida: (1) Southeast Florida (SEF), (2) Central Florida (CF), and (3) Tampa Bay 

(TB). It is worth noting here that this was the same dataset used in a previous study by Sikder and Pinjari 

(2013).3 Therefore, only the patterns of relevance to this paper are quickly summarized here. The 

observed participation rates in different out-of-home activities are: 49.2% for shopping, 30.4% for other 

maintenance, 29.2% for social/recreational, 20.5% for active recreation, 23.3% for medical, 25.3% for eat 

out, 15.6% for pick-up/drop-off and 6.0% for other activities. Note that all the percentages add up to more 

than 100 because several individuals participated in multiple activities over a day. The average daily time 

allocations to each of the activities are (averaged among those who participated in the activities): 55 

minutes for shopping, 50 minutes for other maintenance, 124 minutes for social/recreational, 48 minutes 

for active recreation, 60 minutes for medical, 49 minutes for eat out, 15 minutes for pick-up/drop-off, and 

21 minutes for other activities. Overall, the activity participation rates and time allocation patterns were 

found to be reasonable for the most part. For example, among all the out-of-home activities considered in 

this study, the highest activity participation rate was observed for shopping followed by other 

maintenance, social/recreational and so on. Further, time allocation to social/recreational activities was 

observed to be larger than that to other activities while that to pickup/drop-off activities was smaller. 

However, it is worth noting one anomaly that was observed in the context of daily time allocation to active 

recreational activities. According to the data, a large proportion (more than 30%) of those who 

participated in active recreation appear to have done so for only 2 minutes or less in a day. Given the 

activities considered in this category (e.g., exercising, working out in gym, or playing sports), there is a 

high chance that such unreasonably small activity durations for a large proportion of the sample is a result 

of measurement error; presumably due to misreporting by the respondents or errors in coding of the 

data4. Such measurement errors can potentially have bearing on the estimated variance of the random 

error term for the active recreation activity. 

                                                            
3 Sikder and Pinjari (2013) used this dataset to assess the spatial transferability of a time-use model with an MDCEV 
structure. On the other hand, the current study uses the dataset to assess the extent to which the MDCHEV helps 
resolve the prediction-related issues associated with the MDCEV model. 
4 To be sure, we considered the possibility of activities of very short duration such as walking around the house. Such 
a trip would begin and end at the same location. But the NHTS collected information on only those trips that were 
made to a different address. Also, the auto travel mode was used to arrive at many of these activities, suggesting that 
these activities are not likely to be short strolls. 
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4 EMPIRICAL RESULTS 
4.1 Model Structure 
Six different model structures were estimated on the above-described activity generation and time-use 

data from each of the three geographic regions considered in this study: (1) The MDCEV model with IID 

extreme value stochastic distributions, (2) The mixed-MDCEV model to accommodate heteroscedasticity, 

(3) The MDCHEV model5, (4) The mixed MDCEV model to accommodate inter-alternative correlations, 

(5) The MDCGEV model, and (6) The mixed-MDCEV model to accommodate both inter-alternative 

correlations and heteroscedasticity. The mixed-MDCEV models were estimated using 200 quasi-Monte 

Carlo random draws (specifically, Halton draws) to adequately cover the space of the mixing distributions. 

Normal distribution and triangular distribution were explored for the mixing distributions. Normal 

distribution provided a better data fit in all cases. The goodness-of-fit measures for all the six model 

structures on the data from the South East Florida (SEF) region is presented in Table 1. These include 

log-likelihood values as well as the Bayesian Information Criterion (BIC) measures on the estimation data. 

One can make several observations from these results and the parameters estimates6 from all the six 

models, as discussed next.  

 First, the MDCHEV model (model #3 in the table) provides the best fit to the data both in terms of 

log-likelihood and the Bayesian Information Criterion (BIC). Further, between the mixed-MDCEV and the 

MDCHEV approaches to incorporate heteroscedasticity, the latter approach provides a far better fit to the 

data. This suggests that the MDCHEV approach performs better than the mixed-MDCEV approach for 

capturing heteroscedasticity in the current empirical context. Of course, this doesn’t necessarily imply that 

the MDCHEV approach would always be better than the mixed-MDCEV approach for introducing 

heteroscedastic stochastic distributions in MDC Models. However, the MDCHEV is a convenient 

approach since it helps reduce the dimensionality of integration in the log-likelihood function. In the above 

mentioned model estimations, the mixed-MDCEV models took 2 to 3 hours to estimate, even after coding 

the analytical gradients of the simulated log-likelihood function and providing starting values for the 

parameters (obtained from the MDCEV models). On the other hand, the MDCHEV models took 15 to 30 

minutes to estimate on the same machine, without having to code the gradients of the log-likelihood 

function. 

Second, the mixed-MDCEV model for inter-alternative correlations (model #4 in the table) does 

not provide significant improvement in model fit over the MDCEV model (model # 1 in the table). A variety 

of different specifications of inter-alternative correlations were explored, but none turned out to be 

                                                            
5 In addition, the MDCEV model was estimated using the MDCHEV likelihood expression in Equation (10) and 
different number of support points (e.g., 5, 10, 15 and 20) but fixing all scale parameters to 1. While not reported in 
the tables, for 15 support points, the resulting parameter estimates, standard errors, and log-likelihood values were all 
very close to those from the MDCEV model estimated using Bhat’s closed-form likelihood expression. This, on one 
hand, demonstrates the accuracy of the Laguerre Gaussian Quadrature technique used for estimating the MDCHEV 
model, and on the other hand, indicates the number of reasonable support points required to estimate the MDCHEV 
model with the current empirical data. 
6 For brevity, detailed estimation results for all the models estimated in the study are not reported in the paper, but are 
available from the authors. 
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statistically significant (i.e., the standard deviations of the random coefficients of the common error 

components were not significantly different from zero). The MDCGEV model (model #5 in table) yielded a 

marginally better log-likelihood over the MDCEV model. This is due to correlations between the random 

utility components of social/recreational and eat out activities (detailed estimation results are available 

from the authors). However, the corresponding nesting parameter was not statistically different from 1 at a 

95% confidence level, suggesting weak correlation between the two random utility components. These 

results suggest that inter-alternative correlations are relatively less prominent compared to 

heteroscedasticity in the current empirical context. This same finding is echoed by the mixed-MDCEV 

model that captures both heteroscedasticity and inter-alternative correlations (model #6), which does not 

show significant improvement in log-likelihood over the mixed-MDCEV model that captures only 

heteroscedasticity (model #2).  

  

4.2 Model Estimation Results 
Table 2 presents the parameter estimates from the MDCEV and MDCHEV models of activity generation 

and time-use for each of the three geographic regions considered in this study. The parameter estimates 

of the mixed-MDCEV models are neither reported not discussed as the model had an inferior model fit 

compared to the MDCHEV model. Similarly the parameter estimates of the MDCGEV models are not 

reported as inter-alternative correlations are not a focus of this paper (besides, as reported earlier, no 

significant correlations were found). 

  

4.2.1 Scale Parameters 

The scale parameter estimates are reported first in the table. As discussed earlier, the MDCEV model 

restricts all the scale parameters for all activities as equal to 1. On the other hand, the MDCHEV model 

allows the scale parameters to be different across different activities while normalizing the scale of in-

home activity to 1. In the current empirical context, the MDCHEV estimates of scale for all out-of-home 

activities except active recreation and “other” activities are significantly smaller than 1, while that for active 

recreation is greater than 1 and that for “other” activity is not different from (therefore fixed to) 1.7 Similar 

patterns can be observed from the parameter estimates for all three geographical regions. Plausible 

reasons for these patterns in the scale parameter estimates are discussed next.  

 As discussed in many references on choice modelling (e.g., Ben-Akiva and Lerman, 1985, 

Koppelman and Bhat, 2006), the random error terms kε  represent a sum of errors (made by the analyst) 

in characterizing the consumers’ utility functions. Commonly cited sources of errors include omitted 

                                                            
7 Further, based on statistical tests, the scale parameters of several pairs of alternatives have been constrained to be 
equal for the sake of parsimony in model specification. Specifically, shopping and medical activities share a common 
scale parameter, other maintenance and pickup/drop-off activities share a common scale parameter, and 
social/recreational and eat-out activities share a common scale parameter, while active-recreation has its own unique 
scale parameter. The scale parameters of the in-home and other activities have been fixed to 1. Therefore, only 4 
unique scale parameters were estimated for each geographical region. 
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alternative attributes and decision-maker characteristics, measurement errors in the explanatory variables 

included in the utility functions, and errors in the functional form of the utility function. In the current 

context, we attribute the specific patterns observed in the scale parameter estimates to the following three 

major sources of unobserved variation. First, recall from Section 3 that each activity category (i.e., choice 

alternatives) used in the model specification is an aggregation of many finely categorized activity types. 

The influence of explanatory variables included in the utility function of an aggregate activity category can 

potentially vary by each disaggregate activity type in that category. Such variation resulting from 

aggregation of choice alternatives is unobservable and manifests in the form of additional variance of 

random error terms (Daly, 1982). Among the nine activity categories considered in the current empirical 

context, the in-home activity is an aggregation of a wider variety of finer activities when compared to out-

of-home activities. Recall that the in-home activity category combines all activities other than out-of-home 

activities into a composite outside good. This is one reason why the stochastic component of in-home 

activity has greater variance compared to most out-of-home activity categories. Second, note from Table 

2 that the utility specifications for all activities except the in-home and “other” activity categories include 

explanatory variables. While the in-home activity category was treated as a reference alternative in the 

specification for identification purposes, no explanatory variable turned out to be significant in the utility 

function for the “other” activity category; presumably due to the arbitrary nature of the “other” activity 

category. Besides, similar to the in-home activity category, the “other” activity category combines all out-

of-home activities other than those of interest into a single composite category. Thus, the final empirical 

specification of the deterministic utility components views in-home and “other” activities as similar (except 

the alternative-specific constant for “other” activity). This is perhaps a reason why the scale parameter for 

the “other” activity is not different from the in-home activity. Third, in the context of discrete-continuous 

choice modelling, measurement errors in the continuous dependent variables can potentially be 

significant. This is unlike traditional discrete choice models, where there might not be significant errors in 

dependent variables (because it is easier to elicit information on the discrete choice decisions made by 

the consumers than to measure the continuous quantity decisions). In the current empirical application, 

recall from Section 3 that time allocation to the active recreational activity might be associated with 

substantial measurement errors leading to greater unobservable variation. This may be a reason why the 

estimated scale parameter for the active recreational activity is greater than 1. 

In summary, the MDCHEV model estimates reveal the presence of substantial heteroscedasticity 

in the random utility components of choice alternatives and point to different sources of unobservable 

variation. 

 

4.2.2 Baseline Utility and Satiation Parameters 

All the parameter estimates in baseline utility and satiation functions have intuitive interpretations and 

identical signs in both the MDCEV and MDCHEV models for all three regions. The substantive 

interpretations are not a focus of this paper. Therefore only the influence of incorporating 
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heteroscedasticity on parameter estimates is discussed. Specifically, for all out-of-home activities, except 

active recreation, the magnitude of baseline utility parameter estimates in the MDCHEV model is slightly 

smaller than that in the MDCEV model. For active recreation, however, the baseline utility parameter 

estimates from the MDCHEV model are of greater magnitude than those from MDCEV. This pattern can 

be attributed to the differences in scale parameters between the MDCEV and MDCHEV models. 

Specifically, the baseline parameter estimates in the MDCEV model are confounded with the unknown 

scale parameters (which are simply assumed to be equal to 1). But the MDCHEV model helps in 

disentangling the baseline parameter estimates from the scale difference between the out-of-home and 

in-home activities. As a result, all activities with smaller (greater) scale parameters in the MDCHEV model 

than those in the MDCEV model have smaller (larger) magnitudes for baseline parameter estimates in the 

former model. 

 In the context of satiation functions, the parameter estimates of MDCHEV model are greater (in 

magnitude) for all out-of-home activities that have a tighter distribution of the random utility component 

(i.e., smaller scale parameter) than that in the MDCEV model. For active recreation activity, the satiation 

function parameter estimates of the MDCHEV model are smaller in magnitude than those from the 

MDCEV model. 

Since the true parameter values are unknown, it is difficult to assert which model provides 

better/less-biased parameter estimates. However, note from the log-likelihood measures for all three 

geographical regions (last two rows of the table) that the MDCHEV model yields a significantly better fit to 

the estimation data than the MDCEV model. For example, the likelihood ratio test statistic between the 

two models for the South East Florida region is 385.12, which is larger than the chi-squared statistic with 

four degrees of freedom at any reasonable level of significance. This suggests that ignoring 

heteroscedasticity (i.e., estimating an MDCEV model) can potentially lead to biased parameter estimates 

in both baseline marginal utility and satiation functions and inferior model-fit. 

 

4.3 In-Sample Prediction Performance 
All prediction exercises in this paper were performed using the forecasting algorithm proposed by Pinjari 

and Bhat (2011). In this subsection, we first provide a brief discussion of this forecasting algorithm and 

then compare the in-sample prediction performance of the MDCEV and MDCHEV models.   

 Given the observed characteristics of an individual (e.g., kz ), the available time budget, the 

estimated parameters, and the simulated error draws ( kε ), the forecasting algorithm first identifies the 

number of chosen alternatives, and then computes the optimal time allocation to each of the chosen 

alternatives. In the first step, the price-normalized baseline utility values ( /k kpψ ) are computed for all 

choice alternatives. Next, the alternatives are sorted in the descending order of their price-normalized 

baseline utility values, with the outside good in the first place in this sorted arrangement. Subsequently, 

the number of chosen alternatives is determined. This begins with an assumption that only the first 



  16 
 

alternative in the above sorted arrangement is chosen. Based on this assumption, an estimate of the 

Lagrange multiplier (λ ) of the utility maximization problem is computed. To check if the next alternative 

(with the next highest price-normalized baseline utility) is also chosen, the Lagrange multiplier estimated 

in the previous step is compared with the price-normalized baseline utility of the alternative. If the 

estimated Lagrange multiplier is greater than the price-normalized baseline utility of the next alternative, 

the optimal time allocations to the previously assumed chosen alternatives are calculated and the 

algorithm stops. If not, the next alternative is also added to the set of chosen alternatives, and a new 

estimate of the Lagrange multiplier is computed and compared with the next highest price-normalized 

baseline utility. This procedure is repeated until the exact number of chosen alternatives is determined. 

Once the number of chosen alternative is determined, the optimal time allocations are computed using 

price-normalized baseline utility and satiation parameters of the chosen alternatives and the available 

time budget.  

In this paper, for all prediction exercises, the above-described forecasting procedure was 

conducted for 100 sets of quasi-Monte Carlo random draws (specifically Halton draws) for each individual 

in the data to adequately cover the distributions of the random error terms. The only difference between 

the MDCEV and the MDCHEV forecasting procedures is that the simulated error draws come from the IID 

extreme value distribution for the MDCEV model while they come from the heteroscedastic extreme value 

(HEV) distribution for the MDCHEV model.  

Using the above-described forecasting procedure, first the predicted shares of individuals 

participating in each activity type (i.e., the discrete choice component) were computed. Table 3 presents 

these aggregate shares for both MDCEV and MDCHEV models for all three geographical regions. The 

predicted aggregate shares for each activity were computed as the proportion of instances the activity 

was predicted with a positive time allocation across all 100 sets of random draws for all individuals. For 

each prediction result presented, the corresponding observed values in the estimation sample are 

presented in the parentheses. As can be observed from the table, both the MDCEV and MDCHEV 

models perform well in predicting the aggregate shares of participation in each activity type. 

To evaluate the model predictions of time allocations to each activity (i.e., the continuous choice 

component), we compared the distributions of the predicted time allocations (for only those predicted with 

positive time allocation) with the distributions of observed time allocations (again, for only those observed 

with positive time allocation). Such distributions are presented in the form of box-plots in Figure 1 (for 

South East Florida region only). There are 9 sub-figures in Figure 1, one for each activity type. In each 

sub-figure, the distributions of predicted activity durations from both MDCEV and MDCHEV models are 

presented as box-plots along with the distributions of observed activity durations. Several interesting 

observations can be made from these box-plots. First, in the context of in-home activities, the predicted 

distributions from both the MDCEV and MDCHEV models show larger left tails than the observed 

distribution. However, the discrepancy between predicted and observed distributions is much greater for 

the MDCEV model than for the MDCHEV model. This suggests a greater chance of under-prediction of 
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in-home activity durations by the MDCEV model. Second, for all out-of-home activities other than active 

recreation, the distributions of activity durations predicted with the MDCEV model show a significant 

chance of over-prediction. For active-recreation, the MDCEV model shows under-prediction of activity 

durations when compared to the observed data. Third, the MDCHEV model rectifies all these issues to a 

considerable extent. As can be observed, the predicted distributions of the MDCHEV model are closer to 

the observed distributions than those of the MDCEV model for almost all activities.  

 The differences in the distributional assumptions between the MDCEV and MDCHEV models 

explain the above differences in performance between the two models. The MDCEV model assumes unit 

scale parameter for all activity categories. For all activities for which the “true” scale parameter is smaller 

than the assumed value, the MDCEV model shows significant over-prediction of activity durations. These 

include all out-of-home activities other than active recreation. This is due to the the asymmetry and the fat 

right tail of the standard Gumbel distribution used in its structure. For instance, the probability of drawing 

any less than -2 from a standard Gumbel distribution  is very low (0.06%), while that of drawing greater 

than 2 is high (12.65%). Since the Gumbel terms enter the model in an exponentiated multiplicative 

fashion (i.e., exp( ) exp( )k k kzψ β ε′= × ), there is a non-negligible chance that the kψ  values become 

quite large and therefore lead to unrealistically large time allocations for several out-of-home activities. 

Whenever an out-of-home activity hogs up a large amount of available time budget, it leaves a very small 

amount of time for the in-home activity (hence the under-prediction of time allocation for the in-home 

activity). Therefore, employing a larger value (than what it is) for the scale parameter of an activity implies 

a fatter right tail for the random utility component, which in turn implies a fatter right tail (than what it 

should be) for the distribution of the predicted consumptions/durations. Similarly, a smaller value of the 

scale parameter assumed in the MDCEV model for active recreation (than what is revealed in the 

MDCHEV model) leads to under-estimation of the time allocated to active recreational activities.8 

The MDCHEV model overcomes the above-discussed problems by allowing the scale parameters 

to be different from each other. Recall that the MDCHEV scale parameter estimates are smaller than 1 for 

all out-of-home activities except active recreation and “other” categories. This implies tighter distributions 

of the kψ  values and therefore a smaller chance of over-prediction of time allocation for those activities. 

For active recreation, the estimated scale parameter in the MDCHEV model is greater than 1. This implies 

a more spread-out distribution of the corresponding kψ  value than that in the MDCEV model, and hence 

a smaller chance of under-estimation. 

In summary, the in-sample prediction exercises suggest that both the MDCEV and MDCHEV 

models perform similarly in predicting the aggregate discrete-choice shares for each activity type. 

However, the MDCHEV model performs far better than the MDCEV model in predicting the time allocation 

to different activities. Note, however, that the MDCHEV-predicted durations are still not very close to the 

observed durations. In this context, exploring the influence of alternative distributional assumptions to 

                                                            
8 The under-estimation is with respect to the observed values, assuming that the observed values are free of errors. 
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extreme value distributions – including right-truncated extreme value distributions, multivariate normal 

distributions, and multivariate skew-normal distributions – on the prediction properties of MDC models is a 

useful avenue for further research. 

 

4.4 Transferability Assessments 
This section examines the influence of incorporating heteroscedasticity on out-of-sample prediction by 

comparing the transferability of MDCEV and MDCHEV models among different geographical regions in 

Florida. Specifically, both the models estimated for each of the three geographical regions (SEF, CF, and 

TB) were transferred to the other two regions. Two different types of transferability metrics were used to 

assess model transferability: (1) log-likelihood based measures, and (2) measures of aggregate-level 

predictive ability. The results obtained from these metrics are discussed next.  

In all transferability assessments, the geographical context from which a model is transferred is 

called the “estimation context” and the geography to which a model is transferred is called the “application 

context”. For the application context, a model estimated using data from the same geography is called the 

“locally estimated model” and a model transferred from a different geography is called the “transferred 

model”. 

 

4.4.1 Log-Likelihood Based Measures of Transferability 

Table 4 presents the log-likelihood values of the transferred and locally estimated MDCEV and MDCHEV 

models for each of the 12 model transfers conducted in this study. One can observe that, for model 

transfers between any two regions (i.e., in any row of the table), the predictive log-likelihood of the 

transferred MDCHEV model (column 5) is better than that of the transferred MDCEV model (column 3), 

suggesting that an MDCHEV model transfers better than an MDCEV model. What is more interesting is 

that the log-likelihood of all transferred MDCHEV models (column 5) are better than that of the 

corresponding locally estimated MDCEV models (column 4). This highlights the importance of 

incorporating heteroscedasticity in MDC models. 

To quantify how much better is the transferability of an MDCHEV model over that of an MDCEV 

model, we computed Transferability Index (TI) values as suggested in Koppelman and Wilmot (1982). TI 

measures the degree to which the log-likelihood of a transferred model exceeds that of a reference model 

relative to a locally estimated model in the application context.  

                                                  ,
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where, ( )j iL β = log-likelihood of the transferred model applied to the application context data, ( )j jL β
 
= 

log-likelihood of the locally estimated model, and ,( )j reference jL β  is the log-likelihood of a locally estimated 

reference model (e.g., a constants only model). In this paper, the constants only specification of the 

MDCEV structure is taken as the reference model. The closer the value of TI is to 1, the closer is the 
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transferred model’s performance to a locally estimated model (in terms of the information captured in the 

application context relative to the reference model). The TI values for all transfers conducted in the study 

are presented in Table 5. The diagonal elements in the table that have a TI value of 1 (in bold) are not of 

interest, because they are not for model transfers from one region to another. It can be observed from the 

non-diagonal elements in the table that incorporating heteroscedasticity leads to a considerable 

improvement in the TI value. For example, for models transferred from South East Florida and Central 

Florida, allowing for heteroscedasticity resulted in an improvement of the TI value from 0.53 to 0.77 (or 

53% to 77%). Similar improvements in TI values can be observed for all other transfers conducted in the 

study. 

 

4.4.2 Aggregate-level Predictive Accuracy 

To assess the aggregate-level predictive accuracy of the transferred models, two types of Root Mean 

Square Error (RMSE) metrics were used in this study: (1) RMSE for the discrete (activity participation)  

 

choice component, and (2) RMSE for the continuous (time allocation) component.  
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where, kP  and kO  are the aggregate predicted and observed shares for activity type k, respectively (or 

durations averaged over all individuals who participated in activity type k), and { }( ) /k k k kREM P O O= −   

is the percentage error in the prediction of alternative k. 
 Table 6 reports the RMSEs for all transfers conducted in the study. As expected, in any row of 

the table, the aggregate errors of the locally estimated models (in bold) are lower than those of 

transferred models of the same model structure. For any transfer, the RMSEs for the discrete 

components of the two model structures (MDCEV and MDCHEV) are very similar. However, considerable 

differences can be observed in the RMSEs for the continuous components of the two model structures. 

Specifically, the RMSEs for the continuous component of the MDCHEV models (both transferred and 

locally estimated models) are considerably smaller than the corresponding values for the MDCEV models. 

A closer examination suggests that the RMSEs for the continuous component of even transferred 

MDCHEV models are smaller than those of locally estimated MDCEV models, suggesting that the 

transferred MDCHEV models are providing better prediction performance than locally estimated MDCEV 

models. Recall that predictive log-likelihood values of the transferred MDCHEV models were better than 

the log-likelihood values of locally estimated MDCEV models. These results reiterate the benefit of 

incorporating heteroscedasticity in MDC models. 

 

4.4.3 Response to Changes in Explanatory Variables 
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To compare the transferability of MDCEV and MDCHEV models based on their responses to changes in 

explanatory variables, we simulated the influence of a scenario where the age of individuals older than 29 

years was increased by 10 years (to reflect aging of the population).  Each estimated model was applied 

to its own estimation sample as well as the other two geographical context datasets for both base and 

policy scenarios. To measure the resulting changes in the time-use patterns, a policy response measure 

was computed. To do so, first, for each set of error term draws for each individual, the overall change in 

activity participation and time-use patterns was measured as below (see Jaggi et al., 2013):  
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where, ˆ p
kt  is the predicted duration for alternative k  in the policy case, and ˆb

kt   = predicted duration for 

alternative k  in the base case.  Next, the above metric was averaged over all sets of error term draws for 

all individuals.  

The policy response measure was computed for 50 sets of bootstrapped values drawn from the 

sampling distributions implied by the parameter estimates and their covariance matrix.  Table 7 presents 

the policy response measures for all transferred and locally estimated models in the form of average 

policy response values (averaged over all bootstrapped estimates). The corresponding standard errors 

are provided in the parentheses next to each average policy response measure. Since the true policy 

response is unknown, the policy response obtained from the model with the best data fit (i.e., the locally 

estimated MDCHEV model) in each region is taken as the reference for that region. The corresponding 

cells in the table are shaded in gray. The transferability performance of transferred MDCEV and MDCHEV 

models are assessed by comparing their policy response measures to that from the corresponding 

reference model (i.e., the policy response measure from the locally estimated MDCHEV model).  

It can be observed that, for each of the three regions, the policy response measures of 

transferred MDCHEV models are better than (i.e., closer to the policy response implied by the locally 

estimated MDCHEV model) those of the transferred MDCEV models. Further, except for transfers to and 

from the Tampa bay region, the policy response of a transferred MDCHEV model appears to be better 

even than that of a locally estimated MDCEV model. These results suggest that improvement in model 

structure (i.e., incorporation of heteroscedasticity) has not only resulted in a better data-fit but also a 

better ability to predict responses to changes in explanatory variables. 

In summary, all the transferability assessments conducted in this study suggest that the proposed 

methodological extension (of incorporating heteroscedasticity) helps in enhancing the spatial 

transferability (hence the predictive ability) of time-use models.  
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5 SUMMARY AND CONCLUSIONS 
This paper investigates the benefits of incorporating heteroscedastic stochastic distributions in random 

utility maximization-based multiple discrete continuous (MDC) choice models. To this end, the paper 

formulates a Multiple Discrete-Continuous Heteroscedastic Extreme Value (MDCHEV) model that 

employs heteroscedastic extreme value (HEV) distributed random utility components in MDC models. 

Heteroscedasticity is accommodated by allowing the scale parameters of the random utility components 

to be different across the different choice alternatives. Therefore, the MDCHEV model collapses to the 

MDCEV model when all the scale parameters are constrained to be equal. The likelihood of the MDCHEV 

model is a uni-dimensional integral that can be easily and accurately evaluated using quadrature 

techniques.  

  In addition to formulating the MDCHEV model, the paper investigates the benefits of incorporating 

heteroscedasticity for analyzing individuals’ daily activity participation and time allocation choices, using 

data from the 2009 National Household Travel Survey (NHTS) data for three major urban regions in 

Florida – South East Florida, Central Florida, and Tampa Bay. The empirical analysis proceeds in two 

stages. In the first stage, a series of model estimations are carried out to select the best fitting MDC 

model structure for the current empirical data. Specifically, the following six different model structures are 

estimated: (1) The MDCEV model with IID extreme value stochastic distributions, (2) The mixed-MDCEV 

model to accommodate heteroscedasticity across choice alternatives, (3) The MDCHEV model, (4) The 

mixed MDCEV model to accommodate inter-alternative correlations, (5) The MDCGEV model to 

incorporate inter-alternative correlations while retaining closed-form probability expressions, and (6) The 

mixed-MDCEV model to accommodate both inter-alternative correlations and heteroscedasticity. The 

results from all these model estimations resulted in the following findings in the current empirical context. 

First, among all the above six model structures, the MDCHEV structure provided the best fit to the data. 

Second, no significant correlations were found between the random utility components of different activity 

type alternatives but heteroscedasticity was prominent. Given these results, the second stage analysis 

focuses on comparing the MDCHEV and the MDCEV models, in terms of their empirical parameter 

estimates, in-sample prediction performance, and transferability to different geographical regions. For 

spatial transferability assessments, the models estimated for each of the three regions were transferred to 

the other two regions. 

  The parameter estimates of the MDCHEV model reveal the presence of substantial differences in 

the scale parameters (i.e., heteroscedasticity) of the random utility components across different activity 

type choice alternatives. Plausible reasons for heteroscedasticity include aggregation of choice 

alternatives into broader activity categories and measurement errors in the continuous dependent 

variables. These findings suggest that data collection efforts and model specifications for discrete-

continuous choice models need to be cognizant of potential aggregation and measurement errors.  

  Neglecting heteroscedasticity (when present) in MDC models can have several ramifications. As 

revealed from the current empirical application, ignoring heteroscedasticity can potentially lead to biased 
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parameter estimation and inferior statistical fit to the estimation sample. Furthermore, the predicted 

distributions of the continuous quantity decisions (time allocations, in the current empirical context) can be 

distorted when compared to the distributions observed in the estimation sample. Specifically, the 

MDCEV-predicted distributions of continuous quantities exhibit thicker right tails (i.e., greater chance of 

over-prediction) for some alternatives and thinner right tails (i.e., greater chance of under-prediction) for 

other alternatives when compared to the distributions observed in the estimation sample. In the current 

empirical context, the time allocations for many out-of-home activities were over-estimated and those for 

in-home and active recreation activities were under-estimated. The MDCHEV model overcomes these 

issues to a considerable extent by allowing the scale parameters to be different from each other. 

Specifically, the MDCHEV model results in tighter (wider) distributions of random utility components for 

the alternatives for which the MDCEV over-predicts (under-predicts) the time allocations and therefore 

reduces the chances of over-prediction (under-prediction).  

  Spatial transferability assessments using a variety of different assessment metrics suggest better 

predictive ability for MDCHEV models transferred from other regions than MDCEV models transferred 

from those same regions. More interestingly, in most cases, the transferred MDCHEV models appear to 

perform not only better than transferred MDCEV models but also better than locally estimated MDCEV 

models. These results reiterate the importance of incorporating heteroscedasticty in MDC choice models. 

  The findings in this paper not only demonstrate the benefits of employing HEV distributions over 

IID extreme value distributions in MDC models, but also raise a more general issue of the importance of 

distributional assumptions in MDC Models. In this context, exploration of the influence of alternative 

distributional assumptions – such as multivariate heteroscedastic extreme value and multivariate normal 

distributions – on the prediction performance of MDC models is a potentially fruitful avenue for further 

research. Equally important is the need for investigating the relative importance of inter-alternative 

correlations vis-à-vis heteroscedasticity in error terms (across alternatives as well as across individuals). 

Further studies using both simulated data and empirical data to compare the performance of a variety of 

different model structures, including MDCEV, MDCHEV, MDCGEV, mixed-MDCEV, and MDCP models 

are warranted to address these issues. 
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Table 1: Goodness of Fit of Different MDC Model Structures on the Empirical Time-Use Data Used in the Current Study 

 Model with 
IID 

Stochastic 
Distribution 

Models with Heteroscedastic 
Stochastic Distributions 

Models with Correlated           
Stochastic Distributions 

Model with 
Heteroscedastic and 

Correlated Stochastic 
Distributions 

MDCEV 
(Model #1) 

Mixed-MDCEV 
(Model #2) 

MDCHEV 
(Model #3) 

Mixed-MDCEV 
(Model #4) 

MDCGEV 
(Model #5) 

Mixed-MDCEV 
(Model #6) 

Log-likelihood at convergence -29397.2 -29345.0 -29204.4 -29396.7 -29392.1 -29344.5 

Number of Parameters 51 53 55 52 52 53 

BIC =  -2*LL+Ln(N)*K 59184.2 59095.1 58829.2 59191.9 59181.7 59094.1 

   Note: LL is the log-likelihood value at convergence, N is the number of observations, and K is the number of parameters. 
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Table 2: Model Estimation Results 
 

  South East Florida (SEF) Central Florida (CF)  Tampa Bay (TB) 

 
MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 
Scale Parameters (t-stats against 1) 
  In-home Activity  

 
     1.00(fixed) 

 
1.00(fixed)  

  
    1.00(fixed) 

  
   1.00(fixed) 

  
     1.00(fixed) 

  
    1.00(fixed) 

  Shopping      1.00(fixed) 0.73(11.11) 1.00(fixed) 0.68(12.08) 1.00(fixed) 0.68(11.06) 
  Other Maintenance 1.00(fixed) 0.52(22.06) 1.00(fixed) 0.42(27.84) 1.00(fixed) 0.47(25.72) 
  Social/Recreational 1.00(fixed) 0.60(16.96) 1.00(fixed) 0.58(16.16) 1.00(fixed) 0.55(17.29) 
  Active Recreation 1.00(fixed) 1.14(1.77) 1.00(fixed) 1.18(1.87) 1.00(fixed) 1.40(3.46) 
  Medical  1.00(fixed) 0.73(11.11) 1.00(fixed) 0.68(12.08) 1.00(fixed) 0.68(11.06) 
  Eat out 1.00(fixed) 0.60(16.96) 1.00(fixed) 0.58(16.16) 1.00(fixed) 0.55(17.29) 
  Pick-up/ Drop-off 1.00(fixed) 0.52(22.06) 1.00(fixed) 0.42(27.84) 1.00(fixed) 0.47(25.72) 
  Other Activities 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 1.00(fixed) 
Baseline Utility Parameters 

Constants             

  Shopping -7.45(-74.79) -7.26(-90.07) -7.55(-53.30) -7.30(-65.61) -6.69(-89.77) -6.69(-122.18) 

  Other Maintenance -8.90(-49.05) -7.98(-71.42) -8.54(-53.07) -7.74(-68.50) -7.41(-83.86) -7.02(-131.87) 

  Social/Recreational -8.48(-77.19) -7.94(-92.90) -8.68(-53.06) -7.98(-64.67) -8.18(-34.51) -7.52(-53.68) 

  Active Recreation -8.99(-67.10) -8.98(-48.37) -9.33(-44.29) -9.33(-33.58) -8.69(-30.04) -9.63(-19.88) 

  Medical  -8.75(-75.57) -8.25(-85.18) -8.78(-45.52) -8.13(-55.34) -7.99(-45.27) -7.62(-60.85) 

  Eat out -9.48(-51.48) -8.56(-65.60) -9.65(-29.19) -8.50(-39.64) -8.07(-31.25) -7.50(-49.88) 

  Pick-up/ Drop-off -8.46(-56.68) -7.91(-77.51) -9.85(-18.27) -8.26(-33.45) -8.99(-26.47) -7.94(-39.83) 

  Other Activities -10.20(-84.54) -9.97(-87.96) -10.26(-61.8) -9.52(-31.74) -9.04(-84.49) -9.04(-84.81) 
Gender (Male is base)  
  Female - Shopping 0.06(0.79) 0.02(0.40) 0.13(1.56) 0.10(1.70) 0.16(1.82) 0.11(1.81) 
  Female - Active Recreation -0.20(-1.97) -0.26(-2.23) - - - - 
  Female - Pick-up/ Drop-off - - - - 0.27(1.71) 0.13(1.48) 
Age (30 – 54 years is base)            
  18-29 years - Social/Recreational 0.75(3.57) 0.50(3.82) - - - - 
  55-64 years - Medical - - 0.15(0.77) 0.07(0.54) 0.39(1.80) 0.28(1.87) 
  55-64 years - Eat out - - 0.39(2.01) 0.20(1.76) - - 
  55-64 years - Pick-up/Drop-off  -0.48(-2.64) -0.24(-2.34) -0.38(-1.65) -0.23(-2.20) - - 
  65-74 years - Medical  0.28(2.33) 0.21(2.47) 0.16(0.93) 0.08(0.64) 0.30(1.47) 0.21(1.51) 
  65-74 years - Eat out - - 0.43(2.44) 0.21(1.97) - - 
  65-74 years - Pick-up/Drop-off -0.62(-3.78) -0.29(-3.12) -0.43(-1.96) -0.26(-2.61) - - 
  ≥ 75 years  - Social/Recreational - - - - -0.31(-2.52) -0.18(-2.49) 
  ≥ 75 years  - Active Recreation - - - - -0.16(-1.21) -0.21(-1.12) 
  ≥ 75 years  - Medical 0.24(2.11) 0.20(2.39) 0.20(1.14) 0.11(0.94) 0.36(1.79) 0.26(1.92) 
  ≥ 75 years  - Eat out - - 0.39(2.16) 0.19(1.77) - - 
  ≥ 75 years  - Pick-up/ Drop-off -1.00(-5.99) -0.49(-5.07) -0.65(-2.82) -0.34(-3.32) -0.59(-3.21) -0.33(-3.14) 
White race - Eat out 0.27(1.73) 0.17(1.81) 0.44(1.72) 0.24(1.63) 0.28(1.08) 0.15(1.00) 
Driver (Non-driver is base)           
  Driver - Other Maintenance 0.44(2.36) 0.14(1.41) - - - - 
  Driver - Social/Recreational - - - - 0.68(2.97) 0.32(2.40) 
  Driver - Active Recreation - - - - 0.60(2.29) 0.90(2.41) 
  Driver - Pick-up/ Drop-off - - 1.06(2.07) 0.37(1.66) 0.72(2.26) 0.33(1.81) 

 Education (High Sch./low base)           
  College - Other Maintenance  0.35(3.10) 0.17(2.76) - - 0.33(2.64) 0.15(2.33) 
  Bac. /High - Other Maintenance 0.50(4.76) 0.27(4.52) 0.22(1.94) 0.07(1.32) 0.32(2.52) 0.13(1.95) 
  Bac./High - Active Recreation 0.20(1.81) 0.24(1.91) 0.39(2.96) 0.49(3.09) 0.21(1.51) 0.31(1.67) 
Born in US           
  Social/Recreational  0.17(1.77) 0.10(1.74) - - - - 
  Eat out 0.49(4.18) 0.30(4.19) 0.14(0.66) 0.08(0.66) - - 
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Table 2: Model Estimation Results (continued…) 
 

   South East Florida (SEF) Central Florida (CF)  Tampa Bay (TB) 

 
MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

Coef. (t-stat) Par. (t-stat) Coef. (t-stat) Par. (t-stat) Coef. (t-stat) Coef. (t-stat) 
Number of Children           
  0-5 years - Shopping  - - -0.50(-2.55) -0.33(-2.42) -0.14(-0.85) -0.12(-1.05) 
  0-5 years - Other Maintenance -0.29(-1.68) -0.17(-1.64) -0.26(-1.38) -0.10(-1.15) - - 
  0-5 years - Pick-up/Drop-off  0.26(1.81) 0.16(1.44) 0.58(3.90)  0.30( 3.86) 0.23(1.30) 0.11(1.07) 
  6-18 years - Pick-up/Drop-off  0.48(5.09) 0.28(4.88) 0.46(2.95) 0.20(2.65) 0.58(3.95) 0.34(3.81) 
Income (<25K is base)             
  25 -55 K - Other Maintenance - - 0.34(2.43) 0.15(2.28) - - 
  25 -55 K - Social/Recreational  - - 0.29(2.11) 0.16(1.89) - - 
  25 -55 K - Active Recreation - - 0.39(2.34) 0.44(2.29) - - 
  25 -55 K - Eat out 0.29(2.08) 0.17(1.94) 0.31(2.10) 0.16(1.86) - - 
  55 - 75k - Other Maintenance - - 0.28(1.62) 0.12(1.47) - - 
  55 - 75k - Social/Recreational  - - 0.27(1.61) 0.13(1.31) - - 
  55 - 75k - Active Recreation 0.28(2.03) 0.33(2.10) 0.43(2.16) 0.49(2.11) 0.19(1.02) 0.20(0.76) 
  55 - 75k - Eat out 0.30(1.86) 0.17(1.75) 0.33(1.91) 0.17(1.62) 0.31(1.87) 0.20(2.05) 
  >75 K - Other Maintenance - - 0.37(2.26) 0.15(1.89) - - 
  >75 K - Social/Recreational  - - 0.38(2.48) 0.18(1.96) - - 
  >75 K - Active Recreation 0.55(4.59) 0.63(4.41) 0.51(2.69) 0.54(2.45) 0.67(4.36) 0.88(4.06) 
  >75 K - Eat out 0.82(5.98) 0.46(5.42) 0.47(2.85) 0.23(2.25) 0.51(3.63) 0.29(3.53) 
No. of Workers           
  Shopping -0.14(-2.26) -0.09(-2.12) -0.10(-1.20) -0.06 (-1.05) - - 
  Pick-up/ Drop-off - - 0.14(1.21) 0.09(1.52) 0.38(3.24 ) 0.21(3.07) 
# Recreation sites in a mile from   
   HH. Social/Recreational 0.005(3.55) 0.003(3.81) 0.07(2.02) 0.04(1.99) 0.004(2.42) 0.002(2.13) 

# Intersections in 0.25 miles from  
   HH. Active Recreation - - 0.006(1.25) 0.005(1.02) 0.01(1.59) 0.01(1.74) 
No. of Cul-de-sacs in 0.25 miles  
   from HH. Active Recreation 0.009(0.92) 0.01(1.08) - - - - 

Day of the Week              
  Monday - Eat out -0.28(-2.04) -0.16(-1.87) -0.16(-1.10) -0.11(-1.21) - - 
  Friday - Social/Recreational - - 0.22(1.80) 0.11(1.54) 0.19(1.38) 0.13(1.66) 
  Friday - Eat out - - 0.30(2.29) 0.16(2.06) 0.18(1.23) 0.12(1.42) 
Satiation Parameters 
Constants              
  Shopping 2.82(33.98) 3.25(38.31) 3.04(46.97) 3.55(48.76) 3.01(44.73) 3.51(45.49) 
  Other Maintenance 3.17(46.65) 3.96(54.83) 2.94(37.04) 3.89(50.04) 2.72(21.76) 3.66(29.62) 
  Social/ Recreational 4.31(49.46) 4.99(52.25) 4.19(49.04)     4.90(50.80) 4.44(46.92) 5.21(49.13) 
  Active Recreation       1.64(8.56)     1.46(6.60)     1.57(9.02)     1.37(6.54) 2.04(16.81) 1.48 (8.07) 
  Medical 3.38(42.48) 3.86(43.66) 3.11(32.69) 3.70(36.05) 3.19(31.79) 3.76(34.10) 
  Eat out 3.02(34.73) 3.71(40.20) 3.15(36.18) 3.86(41.14) 3.05(28.65) 3.80(34.81) 
  Pick-up/Drop-off 1.44(15.93) 2.32(23.59) 1.41(12.98) 2.49(22.49) 1.59(13.58) 2.37(19.41) 
  Other Activities 2.41(16.38) 2.41(16.41) 1.97(11.77) 2.20(10.04) 2.09(12.84) 2.09(12.88) 
Gender  (Male is Base)           
  Female - Shopping 0.34(3.13) 0.34(3.54) - - 0.34(2.12) 0.26(2.06) 
  Female - Active Recreation -0.25(-1.30) -0.22(-1.14) - - - - 
Age. 35-45 years - Social/Recreational -0.32(-1.77) -0.37(-2.25) - - - - 
Education (< college is base)             
 Some College - Active Recreation 0.36(1.49) 0.34(1.38) 0.31(1.10) 0.27(0.94) - - 
 Bachelor/ Higher - Active Recreation 0.94(4.28) 0.86(3.81) 0.76(2.93) 0.65(2.45) - - 
Day of the Week              
  Friday - Social/Recreational 0.31(1.83) 0.34(2.19) - - - - 
  Friday - Eat out 0.26(1.41) 0.27(1.66) - - 0.39(1.66) 0.40(1.99) 
Log-likelihood at constants -29681.3 -29454.6 -20518.7 -20297.6 -18390.8 -18234.3 
Log-likelihood at convergence -29397.2 -29204.4 -20386.6 -20180.0 -18302.1 -18148.3 
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Table 3: Predicted and Observed Activity Participation (% participation) Rates 

    In-home Shopping Other 
Maintenance 

Social/ 
Recreational 

Active 
Recreation Medical Eat Out Pick Up/     

Drop Off 
Other 

Activities 

SEF 

% Participation(MDCEV) 100.0 (100.0) 49.2 (51.0) 29.9 (30.6) 29.0 (30.5) 19.1 (20.6) 23.1 (24.8) 22.8 (24.3) 16.0 (17.0) 5.3 (5.7) 

% Participation(MDCHEV) 100.0 (100.0) 47.6 (51.0) 29.3 (30.6) 29.0 (30.5) 19.8 (20.6) 22.9 (24.8) 22.2 (24.3) 16.0 (17.0) 5.5 (5.7) 

CF 
% Participation(MDCEV) 100.0 (100.0) 49.3 (49.9) 30.9 (30.4) 29.1 (30.0) 20.4 (21.9) 23.0 (24.3) 26.2 (27.2) 15.5 (16.2) 5.3 (5.7) 

% Participation(MDCHEV) 100.0 (100.0) 47.1 (49.9) 30.3 (30.4) 28.5 (30.0) 21.0 (21.9) 22.8 (24.3) 25.3 (27.2) 15.3 (16.2) 5.5 (5.7) 

TB 
% Participation(MDCEV) 100.0 (100.0) 47.9 (48.5) 31.9 (31.6) 26.3 (27.1) 19.6 (21.2) 22.4 (23.4) 23.6 (24.4) 14.4 (15.5) 6.6 (7.0) 

% Participation(MDCHEV) 100.0 (100.0) 45.9 (48.5) 31.1 (31.6) 25.8 (27.1) 20.3 (21.2) 21.9 (23.4) 22.9 (24.4) 14.3 (15.5) 6.8 (7.0) 
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Figure 1: Observed and Predicted Distributions of Activity durations (for the Southeast Florida Region) 
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Table 4: Transferability Assessment Results: Log-likelihood of Transferred and Locally Estimated Models 
 

Transferred 
Form 

Transferred 
To 

Log-likelihood Values 

Transferred MDCEV Local MDCEV Transferred MDCHEV Local MDCHEV 

SEF 
CF -20448.60 -20386.63 -20257.74 -20180.03 

TB -18367.31 -18302.08 -18223.37 -18148.27 

CF 
SEF -29513.25 -29397.16 -29348.51 -29204.44 
TB -18349.97 -18302.08 -18217.24 -18148.27 

TB 
SEF -29598.86 -29397.16 -29393.82 -29204.44 
CF -20481.40 -20386.63 -20274.07 -20180.03 

 
 
 
 

Table 5: Transferability Assessment Results: Transfer Index (TI)  

                             Transferred To 
 
Transferred  From 

SEF CF TB 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

SEF 1.00 1.00 0.53 0.77 0.26 0.69 

CF 0.59 0.70 1.00 1.00 0.46 0.72 

TB 0.29 0.60 0.28 0.72 1.00 1.00 
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Table 6: Transferability Assessment Results: Root Mean Square Error (RMSE) 

   Transferred  
           To  

Transferred  
From  

SEF CF TB 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

D
is

cr
et

e 
C

om
po

ne
nt

  SEF 0.03 0.05 0.04 0.04 0.07 0.06 

CF 0.04 0.08 0.04 0.04 0.04 0.06 

TB 0.05 0.08 0.06 0.09 0.03 0.04 

C
on

tin
uo

us
 

C
om

po
ne

nt
1 SEF 0.11 0.07 0.31 0.16 0.31 0.16 

CF 0.16 0.07 0.16 0.07 0.18 0.10 

TB 0.17 0.08 0.16 0.10 0.17 0.08 

 
 

 
 

Table 7: Transferability Assessment Results: Policy Response Measures 

              Transferred  
                          To 
Transferred  
             From  

SEF CF TB 

MDCEV MDCHEV MDCEV MDCHEV MDCEV MDCHEV 

SEF 2.76 (0.71) 2.30 (0.57) 3.19 (0.84) 2.68 (0.68) 2.39 (0.80) 2.59 (0.65) 

CF 2.92 (0.72) 1.96 (0.49) 3.40 (0.85) 2.30 (0.59) 2.17 (0.78) 2.13 (0.54) 

TB 5.42 (1.43) 4.31 (1.10) 6.01 (1.61) 4.80 (1.24) 5.46 (1.44) 4.33 (1.11) 

 

 


