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Generalized Extreme Value (GEV)-based Error Structures for Multiple Discrete-

Continuous Choice Models 

 

ABSTRACT 

This paper formally derives the class of multiple discrete-continuous generalized extreme value 

(MDCGEV) models, a general class of multiple discrete-continuous choice models based on 

generalized extreme value (GEV) error specifications. Specifically, the paper proves the 

existence of, and derives the general form of, closed-form consumption probability expressions 

for multiple discrete-continuous choice models with GEV-based error structures. In addition to 

deriving the general form, the paper derives a compact and readily usable form of consumption 

probability expressions that can be used to estimate multiple discrete-continuous choice models 

with general cross-nested error structures.  

The cross-nested version of the MDCGEV model is applied to analyze household annual 

expenditure patterns in various transportation-related expenses using data from a consumer 

expenditure survey in the United States. Model estimation results and predictive log-likelihood 

based validation tests indicate the superiority of the cross-nested model over the mutually 

exclusively nested and non-nested model specifications. Further, the cross-nested model was 

amenable to the accommodation of socio-demographic heterogeneity in inter-alternative 

covariance across decision-makers through a parameterization of the allocation parameters.  

 

Keywords: discrete-continuous models, Kuhn-Tucker (KT) demand systems, multiple 

discreteness, MDCEV, GEV, cross-nested error structure 
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INTRODUCTION 

Traditional single discrete choice models are suited to understanding consumer preferences 

related to the choice of a single, discrete, alternative out of several available alternatives. 

However, in several situations, consumer behavior may be associated with the choice of multiple 

alternatives simultaneously, along with a continuous component of choice for the chosen 

alternatives. Such multiple discrete-continuous choice situations are being increasingly 

recognized and modeled in the recent literature in transportation, marketing and economics 

fields.  

A variety of econometric model structures have been used to analyze multiple discrete-

continuous choice situations (see Hanemann, 1978; Wales and Woodland, 1983; Kim et al., 

2002; and von Haefen and Phaneuf, 2005). Among the available modeling frameworks, the 

recently developed multiple discrete-continuous extreme value (MDCEV) model structure 

proposed by Bhat (2005 and 2008) is particularly attractive because of at least two features. First, 

the model offers simple and elegant closed-form consumption probability expressions that 

simplify to the well-known multinomial logit probabilities when each decision-maker chooses 

only one alternative (Bhat, 2005). Second, the model employs a utility specification that enables 

a clear interpretation of the utility parameters and a convenient specification of the alternative 

attributes while maintaining the property of weak complementarity (Bhat, 2008). 

An important limitation of the MDCEV model, however, is the neglect of potential 

interdependence (or similarity) among choice alternatives. This is due to an assumption that the 

stochastic components associated with the utility expressions of the alternatives are 

independently distributed (or uncorrelated). This assumption is somewhat analogous to the 

independent and identically distributed (IID) error terms assumption in the MNL model, and may 

not be justified in several empirical specifications. To relax this assumption, empirical 

applications in the literature used a mixed MDCEV (MMDCEV) model formulation. A problem 

with this approach, however, is that the resulting consumption probabilities do not have closed-

form expressions. This necessitates the use of simulation-based estimation methods that are 

computationally expensive, and are associated with accuracy and parameter identification issues.  

In a recent paper, Pinjari and Bhat (2010) formulated a multiple discrete-continuous 

nested extreme value (MDCNEV) model by employing a two-level nested extreme value (NEV) 

error specification instead of the IID extreme value specification in Bhat’s MDCEV formulation. 
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The MDCNEV model accommodates error term correlations among alternatives in mutually 

exclusive subsets (or nests) of the choice set, while maintaining the closed-form of probability 

expressions for any (and all) consumption pattern. This extension of the MDCEV model is 

analogous to the nested logit extension of the multinomial logit model in that a nested extreme 

value error structure is assumed instead of an IID extreme value error structure. Thus, similar to 

the nested logit model, a drawback of the MDCNEV model is the restriction of the alternatives to 

mutually exclusive nests. On the other hand, in several empirical specifications, it is possible that 

the alternatives belong to more than one nest. That is, a more general, cross-nested structure may 

better represent the interactions between the unobserved utility components of various 

alternatives. Further, since the MDCEV model applications so far involve a large number of 

highly disaggregate choice alternatives, the likelihood of very general, cross-nested type of 

correlations is higher due to a greater possibility of similarity across alternatives (see, for 

example, Kapur and Bhat, 2007; Sener et al., 2008; and Spissu et al., 2009, who use a mixed 

MDCEV formulation to accommodate cross-nested error structures). Thus, it is important to 

incorporate more general stochastic specifications that can allow for very general patterns of 

correlation, while retaining the closed-form of probability expressions. Recognizing such a need, 

Bhat (2008) suggested that generalized extreme value (GEV) error structures could potentially be 

used to allow inter-alternative error term correlations while retaining the closed-form of multiple 

discrete-continuous choice probability expressions. However, neither a formal proof was 

provided on the existence of, nor a general form was derived for, the closed-form probability 

expressions from such a Multiple Discrete-Continuous Generalized Extreme Value (MDCGEV) 

model. 

In the context of the preceding discussion, the objectives of this paper are three-fold:  

(1) To formally derive the MDCGEV model by proving the existence of, and deriving the 

general form of, closed-form consumption probability expressions for multiple discrete-

continuous choice models with GEV-based error terms,  

(2) To derive a compact form of analytical expressions for consumption probabilities of 

multiple discrete-continuous choice models with general cross-nested error structures, which 

can be readily used to code the likelihoods for empirical model estimations, and 

(3) To conduct an empirical study to assess the importance of cross-nesting structures in 

multiple discrete-continuous choice models.  
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The first objective is pursued (in Section 2) by building on the GEV-theory developed by 

McFadden (1978) in the context of traditional single discrete choice models. Specifically, we 

derive the class of MDCGEV models, a general class of multiple discrete-continuous choice 

models based on generalized extreme value (GEV) error specifications. The MDCGEV model 

includes Bhat’s MDCEV and Pinjari and Bhat’s (2010) MDCNEV models as special cases. The 

second objective is pursued (in Section 3) by building on the recent MDCNEV model 

development of Pinjari and Bhat (2010). The third objective is pursued (in Section 4) by 

applying the cross-nested model to analyze household annual expenditure patterns in various 

transportation-related expenses using data from a Consumer Expenditure Survey conducted by 

the Bureau of Labor Statistics of the United States. Section 5 summarizes and concludes the 

paper. 

  

2 THE MDCGEV MODEL 

Following the traditional utility maximization theory of consumer behavior, assume that 

consumers maximize the following random utility function proposed by Bhat (2008) for multiple 

discrete-continuous choice situations:  

1

1

( ) exp( ) 1 1 ; 1, 0

subject to the following linear budget constraint and non-negativity constraints on 

(where is the totalbudget) and 0  (  1,2,.

kK
k k

k k k k

k k k

k

K

k k

k

t
U z

t

t T T t k k

α
γ

β ε α γ
α γ=

=

   ′= + + − ≤ >  
   

= ≥ ∀ =

∑

∑

t

.., )K

 (1) 

In the above consumer demand formulation, U(t) is the total utility accrued from consuming t (a 

Kx1-consumption vector with non-negative consumption quantities tk) amount of the K 

alternatives (or goods) available to the decision maker. The term exp( )k kzβ ε′ + , called as the 

baseline utility for alternative k, represents the random marginal utility of one unit of 

consumption of alternative k at the point of zero consumption for the alternative (In this term, kz  

is a vector of observed alternative-specific and decision-maker attributes, β  is the corresponding 

vector of coefficients, and kε  is the stochastic term capturing the effect of unobserved factors on 

baseline utility of alternative k). The kα
 
terms, called as satiation parameters, serve to capture 

satiation effects in consumer behavior by reducing the marginal utility accrued from each unit of 



5 

 

additional consumption of alternative k (Bhat, 2008). The kγ  
terms, called as translation 

parameters, play a similar role of satiation as that of kα
 
terms, as well as an additional role of 

translating the indifference curves associated with the utility function to allow corner solutions 

(i.e., accommodate the possibility that decision-makers may not consume all alternatives; see 

Bhat, 2008).  

For the above consumer demand problem, assuming that good 1 is always consumed (i.e.,  

1 0t > ), the following stochastic Kuhn-Tucker (KT) conditions can be formed to obtain the 

optimal consumptions *

kt  (k = 1, 2, 3,…, K) (see Bhat, 2008 for details):  

11 εε +=+ VV kk  if * 0,kt >  (k = 2, 3,…, K) 

11 εε +<+ VV kk  if * 0,kt =  (k = 2, 3,…, K)  (2) 

where, 
*

( 1) ln 1 ,k
k k k

k

t
V zβ α

γ
 

′= + − + 
 

 (k = 1, 2, 3,…, K). 1 

These stochastic KT conditions can be used to write the joint probability expression of 

consumption patterns if the density function of the stochastic terms (i.e., the kε  terms) is known. 

In the general case, let the joint probability density function (pdf) of the kε  terms be g( 1ε , 2ε , 

…, Kε ), let M alternatives be chosen out of the available K alternatives, and let the consumptions 

of these M alternatives be * * * *

1 2 3( ,  ,  ,  ...,  ).Mt t t t  As given in Bhat (2008), the joint probability 

expression for this consumption pattern is as follows: 

1 1 1 1 2 1 1 1 1 1 1

1 1 2 1

* * * *

1 2 3

1 1 2 1 1 3 1 1 1 1 2 1

1

( , , , ..., , 0, 0, ..., 0) | |

( , , , ..., , , , ..., , )
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d d
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+ + −

− + − + − + − ++∞

=−∞ =−∞ =−∞ =−∞ =−∞
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−

=
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∫ ∫ ∫ ∫ ∫⋯

2 1 1... ,M Md d d  ε ε ε+ +

   (3) 

where J is the Jacobian whose elements are given by (see Bhat, 2005) 

1 1 1 1 1

* *

1 1

[ ] [ ]
;i i

ih

h h

V V V V
J

t t

ε+ +

+ +

∂ − + ∂ −
= =

∂ ∂
 i, h = 1, 2, …, M – 1.  

                                                 
1 The model formulation presented in the current paper assumes absence of price variation across the choice 

alternatives. It is straight forward to extend the formulation to the case with price variation. Specifically, as 

discussed in Bhat (2008), presence of price variation allows the identification of a scale parameter associated with 

the stochastic terms. 
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Further, as given in Pinjari and Bhat (2010), the above probability expression can be rewritten as 

an integral of an M
th
 order partial derivative of the K-dimensional joint cumulative distribution 

function (CDF) of the error terms 1 2( , ,.., )Kε ε ε : 

1 11

* *

1 1 2 1

1
, 1,2,...,

( ,..., ,0,...,0) | | ( , ,..., ) d
...  

i i

M K

M
V V i K

M

P t t J F

ε εε

ε ε ε ε
ε ε

= − + ∀ =

+∞

=−∞

    =  
 ∂ ∂   

∂
∫  (4) 

where 1 2( , ,..., )KF ε ε ε  is the joint CDF of the error terms 1 2( , ,.., ).Kε ε ε  The reader will note here 

that, in the above expression, the differentials in the partial derivative are with respect to the 

error terms of the M chosen alternatives.  

 In Equation (4), the specification of the joint CDF 1 2( , ,..., )KF ε ε ε  of the error terms 

1 2( , ,..., )Kε ε ε  determines the form of the consumption probability expressions. In this paper, 

following McFadden (1978), we assume a GEV form for the CDF as below: 

( )1 2

1 2( , ,.., ) exp , ,..., K

GEV KF G e e eε ε εε ε ε − − − = −              (5) 

where G is a non-negative function with the following properties (McFadden, 1978; Ben-Akiva 

and Francois, 1983): 

1. ( )1,... ..., 0, 0 ( 1, 2,..., )i K iG y y y y i K≥ ∀ > =  

2. G is homogeneous of degree 0µ > , that is ( )1 1,... ..., ( ,... ..., )i K i KG ay ay ay a G y y yµ= , 

3. ( )1lim ,... ..., , 1,2,...,
iy i KG y y y i K→+∞ = +∞ ∀ = , and 

4. ( ) 1

1

( ,... )
1 0, 0 ( 1,2,..., )

...  

M K
i

M

MG y y
y i K

y y
− ≤ ∀ > =

∂ ∂
∂

. 

To prove that Equation (5) is a multivariate extreme value distribution, McFadden (1978) 

expanded the M
th
 order partial derivative of 1 2( , ,..., )GEV KF ε ε ε  as: 2  

1 2

1 2

11

( , ,..., ) ...
...  

iM

M

GEV K M GEV M GEV

iM

M

F e e e Q F e Q F
εε ε εε ε ε

ε ε
−− − −

=

= =
∂ ∂

∂
∏                  (6)   

                                                 
2 In this equation, and from now onwards, for simplicity in notation, 1 2( , ,..., )GEV KF ε ε ε  is represented as FGEV.  

A formal proof of this expansion (and the GEV-differentiability condition 4) can be found in Daly and Bierlaire 

(2006). Also see Bierlaire (2006) for a proof for the specific case of cross-nested errors. 
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In the above equation, MQ  is a recursive function defined as 1
1

M
M M M

M

Q
Q Q G

y

−
−

∂
= −

∂
, where MG  

is the partial derivative of G with respect to its M
th
 element and 1 1Q G= . Thus, MQ , as indicated 

by McFadden, is a sum of several mixed partial derivative terms, with each term a product of 

partial derivatives of G of  various orders. In each term, the sum of orders of the partial 

derivatives is equal to M. To help the reader understand this better, we expand the terms 2Q , 3Q , 

and 4Q  below: 

2

2 1 2 12

2 2 2 3

3 1 2 3 12 3 1 23 13 2 123

2 2 2 2 2 2 2 2

4 1 2 3 4 12 3 4 1 23 4 13 2 4 14 2 3 24 1 3 34 1 2 12 34

2 2 2 2 3 3 3 3 4

13 24 32 14 123 4 124 3 134 2 234 1 1234

,

, and

,

Q GG G

Q GG G G G GG G G G

Q GG G G G G G GG G G G G G G G G GG G GG G G

G G G G G G G G G G G G G

= −

= − − − +

= − − − − − − + +

+ + + + + −

      (7)      

where 1 2

1 2

,
  

G G
GG

ε ε
=

∂ ∂
∂ ∂ 2

12

1 2

2

,
 

G
G

ε ε
=

∂ ∂
∂

and all other derivatives are defined in a similar fashion. 

 Using Equation (6), the multiple discrete-continuous choice probability of Equation (4) 

can be expanded as: 

1 1
1

* *

1 1
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ε
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                              (8) 

In the above expression, the ±  sign in front of each mixed partial derivative term indicates the 

possibility that the sign can be either +  or −  depending on the number of partial derivatives in 

the term and the number of chosen alternatives. Specifically, the sign before each term is given 
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by ( )1 M N+
− , where N is the number of partial derivatives in the term and M is the number of 

chosen alternatives. To better understand this, the reader is referred to Equation (7) in which 

each of the mixed partial derivate terms in 2Q , 3Q , and 4Q  have alternating signs depending on 

the on the number the partial derivatives in the term.  

The probability expression in Equation (8) can be split into several integrals (each of 

which has a closed-form) and simplified into a closed-form expression as below (see Appendix 

A for the proof):   

{ }

{ }

{ }

1 2

2 2 2

12 3 1 23 1 2 ( 1)1

3 2 2

* * 123 4 12 342
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P t t J e H
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−

=

−
−
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−
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= ×

± ± ±

∏

{ }

{ }

1

.

123...

)
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( )
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M

MH
H

−

 
 
 
 
 
 
 
 
 
 
 + 
 
 ±
  

 

                   (9) 

where  
1( ,.., )

,
 

K

i

V V

i V

H
H

e

e e
=

∂
∂ 1

1
123...

( ,.., )
,

..  

K

n

V V
n

n VV

nH
H

e e

e e
=

∂ ∂
∂

 and all other terms are defined in a 

similar fashion3. Thus, we formally prove the existence of closed-form consumption probability 

expressions for multiple discrete-continuous choice models with GEV error structures, and 

derive a general form for the probability expressions.  

One may observe from the general form of probabilities presented in Equation (9) that for 

a simple MDCEV model with independently distributed error terms, all the terms in the equation 

with derivatives of order 2 or more will be zero.4 Thus, Equation (9) simplifies to 

                                                 
3Note that G and H are similar functions, but with different arguments; G represents 1( ,..., ),nG e e εε −−

whereas H 

represents 1( ,.. .., ).i nV VVG e e e Also note from the ±  signs used in the expression that the sign in front of each 

mixed partial derivative term depends on the number of partial derivatives in the term and the number of chosen 

alternatives (similar to that in Equation (8)). 

4This is because for the MDCEV model, 1 1 2( ,.., ) ...K KV V V V VH e e e e e= + + + . 
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* * 1 2
1

1

( .. )
( ,..., , 0,..., 0) | | ( 1)!i

M
V M

M M
i

H H H
P t t J e M

H=

= −∏ , which further simplifies to the MDCEV 

probability expression derived by Bhat (2005).  

Following the above example of MDCEV, one may wish to use Equation (9) to derive the 

probability expressions with nested and cross-nested error structures. However, except in cases 

with small number of choice alternatives and simple nesting structures, it is anything but 

straight-forward to begin with the most general form of the probability expression provided in 

Equation (9) and simplify it further to a compact probability expression for general nested and 

cross-nested error structures. This is because the number of terms in the summation of Equation 

(9) explodes rather quickly as the number of chosen alternatives (i.e., M) increases. This number 

is equal to the number of ways in which the integer M (or the set of M choice alternatives) can be 

“split” or partitioned into any number of positive integers (subsets), as given below: 

1

No. of terms in the summation of Equation (9) = ( , ),
M

i

B M i
=
∑         (10)   

where ( , )B M i is the number of ways in which the integer M (or the set of M choice alternatives) 

can be split into “ i ” number of positive integers (subsets), given by the recursive relationship 

( , ) ( 1, 1) ( 1, ) ,B M i B M i B M i i= − − + − ×  with ( , ) ( ,1) 1.B M M B M= =  One may observe from 

using these formulae that the number of terms in the summation of the Equation (9) is 15 for M = 

4 (as shown in Equation 7 for 4Q ), 52 for M = 5, 877 for M = 7, and 115975 for M = 10, to 

understand how quickly the number explodes with increase in M. Of course, several of these 

terms will be zero depending on the nesting structure under consideration. Nonetheless, it is still 

difficult to assemble all the non-zero terms into a compact expression. To further complicate 

things, with cross-nested error structures, each term in the summation of the general expression 

of Equation (9) would in turn be another sum of several terms (with the number of terms 

depending on the number of nests each alternative is allocated to). In summary, the top down 

approach of starting with the most general form of MDCGEV probability expressions may not 

yield compact probability expressions for complex nesting structures. Thus, instead of the top 

down approach (i.e., beginning from the most general form), we follow a bottom up approach 

(i.e., beginning from simple error structures to more general error structures) by building on the  

MDCNEV model developed by Pinjari and Bhat (2010) to derive the multiple discrete-

continuous choice probability expressions for general cross-nested error structures. The end goal 
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is to derive compact forms of probability expressions that can be readily used to code the 

likelihoods for empirical model estimations. 

 

3 MDCGEV MODEL WITH CROSS-NESTED ERROR STRUCTURES 

In this section, Section 3.1 briefly describes the MDCNEV model developed by Pinjari and Bhat 

(2010), Section 3.2 builds on the MDCNEV model to derive and describe a multiple discrete 

continuous-choice model with general cross-nesting structures, and Section 3.3 provides 

examples of multiple discrete continuous-choice models with specific cross-nested error 

structures. 

3.1 The MDCNEV Model 

To derive the MDCNEV model probabilities, Pinjari and Bhat (2010) employed the nested 

extreme value (NEV) error term specification with the following cumulative distribution 

function (CDF): 

( )
th

1/

1 2

1 nest

( , ,.., ) exp
KS

NEV K i

i

F Y

θ
θ

ε ε ε
= ∈

  
 = −  
   
∑ ∑

s
s

s s
           (11) 

where, i

iY e
ε−= , s ( 1, 2,..., )KS= is the index to represent a nest of alternatives and KS  is the total 

number of nests the K alternatives belong to. (0 1; 1,2,..., )KSθ θ< ≤ =s s s  is the (dis)similarity 

parameter (or the nesting parameter) introduced to capture correlations among the stochastic 

components of the utilities of alternatives belonging to the ths nest. 

Using the above CDF, they break down the M
th
 order partial derivative in Equation (4) 

into a product of various smaller order partial derivatives, one for each nest, as below: 

( ) ( )

11 2 1 2

1 1 1 2

...   ...  

1
1

...  

M

i

M
NEV i NEV

iM i M

SM
M NEV

NEV

i q

M M

q

F Y F

Y Y Y

F
e F

Y Y YF
ε

ε ε ε ε=

−

= =

 ∂
= × 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
= − × −  

 ∂ ∂ ∂ 

∂ ∂

∂

∏

∏ ∏
s

s s s s

              (12) 

thth

( 1)

11 nestnest, and
{chosen alternatives}

( )

i i
M

q r q
qS

NEV r

r ii
i

F e e sum X

θ

θ θ
ε ε − + −

− −

== ∈∈
∈

        =               

∑ ∑∏ ∏
s

s

s s ss
s s

s ss
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In the above equation, s (=1,2,..., MS ) is the index to represent the nests to which the M chosen 

alternatives belong to, qs  is the number of chosen alternatives in the ths nest (thus, 

1 2 ...
MS

q q q M+ + + = ), 1 2, ,..., qY Y Ys s s  are negative exponentials of the error terms associated 

with each of the chosen alternatives in the ths nest, ( )rsum X s is a sum of elements of a row 

matrix rX s , whose form is described in Pinjari and Bhat (2010).  

 They use the above expression in Equation (4) and follow a series of algebraic 

rearrangement and integration steps to derive the following form of consumption probability 

expressions for the MDCNEV model: 

th
th1

1

th
th

* * *

1 2

nest, and
nest{chosen alternatives}

1 11

nest
nest

( , ,... ,  0,..., 0)

| | ... ...

i
i

i

M

i
i

M

V
V

qS i q
ii

q
V

Vr r=

i
i

P t t t

e e

J

e e

θ
θ

θ

θ

θ θ

∈
∈∈

= =

∈ ∈

=

      
      
 

                    

∏ ∑
∑ ∑∏

∑ ∑
s

s

s
s

s

s
s

s
s

s s

s s

1

1 11 1

1

( ) ( 1) 1 !
S M MM M

SM k

q r

q S S S

r

r == =S

sum X q r

− +

=

=

  
  
  
      − + −    

    
  
      

∑ ∑∏ ∏

∑

s s

s ss
ss s

s

   

     (13)  

3.2 The MDCGEV Model with General Cross-Nested Errors 

In this paper, following Wen and Koppelman (2001), we consider a general cross-nested extreme 

value (CNEV) distributed error term structure that has the following joint CDF: 

( )
th

1/

1 2

1 1nest

( , ,.., ) exp ; where ;0 1; 1.
K K

i

S S

CNEV K i i i i i

i

F Y Y e

θ
θ εε ε ε α α α−

= =∈

  
 = − = ≤ ≤ = 
   
∑ ∑ ∑

s
s

s s s
s ss

    (14) 

In the above CDF for cross-nested errors, iαs  is the allocation parameter corresponding to 

alternative i  and nest s , and all other terms have the same definitions as in Equation (11) for 

NEV errors. Using this CDF for cross-nested errors, however, unlike in the case of the NEV 

error structure as in Equation (12), one cannot directly break down the M
th
 order partial 

derivative in Equation (4) into a product of various smaller order partial derivatives. This is due 

to the presence of cross-nesting. 
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 Now, consider CNEV

i

F

Y∂
∂

, a first order differential of the cross-nested CDF. Since iY  can be 

expanded as: ( )
1

KS

i i iY Yα
=

=∑ s
s

, CNEV

i

F

Y∂
∂

 can be expanded as:  

( )
( ) ( )

( )

1 1

1

Thus,  

K K

K

i

S S
i iCNEV CNEV CNEV

i

i i i i i i

S

CNEV CNEV
i

i i i

YF F F

Y Y Y Y

F F
e

Y

ε

α
α

α α

α
ε α

= =

−

=

   
= =      ∂ ∂ ∂ ∂   

 
= −   ∂ ∂ 

∂∂ ∂ ∂

∂ ∂

∑ ∑

∑

s
s

s ss s

s
s s

          (15)   

Intuitively speaking, the first order partial derivative of the cross-nested CDF with respect to an 

error term can be expressed as a summation of partial derivatives (multiplied by the 

corresponding allocation parameter) over all the nests to which the error term belongs. Similarly, 

higher order partial derivatives can be expressed as a summation of partial derivatives 

(multiplied by the corresponding allocation parameters) over all the mutually exclusive nesting 

combinations to which the error terms belong, as below: 

( ) ( )

( ) ( ) ( ) ( )

1 2

1 2 1 2

1 2

1 2

1 2 1 2

2 2

1 2

1 11 2 1 1 2 2

2 2

1 2

1 11 2 1 1 2

hence ,  and

K K

K K

S S

CNEV CNEV

S S

CNEV CNEV

i

F F

Y Y Y Y

F F
e e

Y Y

ε ε

α α
α α

α α
ε ε α α

= =

− −

= =

 
 =
 ∂ ∂ ∂ ∂ 

 
 = − × − ×
 ∂ ∂ ∂ ∂ 

∂ ∂

∂ ∂

∑ ∑

∑ ∑

s s
s s s s

s s
s s s s

       (16) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 1 1 11 2 1 1 2 2

1 1 11 11 2 1 1 2 2

...
... ..

hence ...
...  ..

K K K

i

M M

K K K

i

i

M M

M MS S S M
CNEV CNEV

i

iM M M

MS S SM M
CNEV

i

i iM M M

M
CNEV

F F

Y Y Y Y Y Y

F
e

Y Y Y

F ε

α
α α α

α
ε ε ε α α α

= = = =

−

= = == =

 
 =
 ∂ ∂ ∂ ∂ ∂ ∂ 

 
 = − ×
 ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂

∂ ∂

∑ ∑ ∑ ∏

∑ ∑ ∑∏ ∏

s
s s s s s s

s
s s s s s s

(17) 

In the above Equations (16) and (17), 
1 2
( 1, 2... ), ( 1, 2... ), ..., ( 1, 2... )

K K M K
S S S= = =s s s  are indices denoting 

the nests to which each of the M chosen alternatives is allocated. In one extreme case when all 

indices take the same value, all alternatives are allocated to only one of the KS  nests. In the other 

extreme case when all indices take different values, then no two alternatives are allocated to the 

same nest. Thus, each set of values of 
1 2
, , ..,

M
s s s represents a particular mutually exclusive 
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nested structure (or a mutually exclusive partitioning) of the M chosen alternatives that can be 

formed from the given cross-nested structure. 

 Now, for a mutually exclusive nesting structure (or partitioning) given by 
1 2
, , ..,

M
s s s , 

denote 
1 2

( , , .., )
M

s s s s  as the set of nests to which the M chosen alternatives are allocated, and 

( )1 2
( , , .., )

M
N s s s s as the number of nests in the set. Using this notation, following Equation (12), 

for a mutually exclusive nesting structure given by 
1 2
, , ..,

M
s s s , the M

th
 order partial derivative 

( ) ( ) ( )
1 21 1 2 2 ...

M

M

CNEV

M M

F

Y Y Yα α α∂ ∂ ∂

∂
s s s

 (which is in the right side of Equation 17) can be broken down 

into a product of ( )1 2
( , , .., )

M
N s s s s  number of smaller order partial derivatives, as below:    

( ) ( ) ( )

( ) ( ) ( )

1 2

thth
1 2

1 1 2 2

( 1)1 1

1( , ,. nestnest, and
{chosen alternatives}

...  

1 ( )

M

ii i ii i

i i
i i i

i ii i

M M

q r q
q

M

CNEV i i i i r

rS ii
i

M
CNEV

Y Y Y

F Y Y sum X

F

θθ

θ θ

α α α

α α
− + −−

=∈ ∈∈
∈

=
∂ ∂ ∂

         − ×              

∂

∑ ∑∏ s

s s ss

s

ss
s s

s s s

s s
s s s ss., )M

∏
s

                      (18) 

Using the above expression in Equation (17), the M
th
 order partial derivative in Equation (4) for 

cross-nested CDF can be expressed as: 

( ) ( )
thth

2

11 2

( 1)1 1

1 1 11 nestnest, and
{chosen alts}

...  

.. ( )

i

ii i ii iK K

i i
i i i i

M ii i

M

iM

q r q
qS S M

i CNEV i i i i r

ri ii
i

M
CNEV e

F Y Y sum X

F ε

θθ

θ θ

ε ε ε

α α α

−

=

− + −−

= = == ∈∈
∈

= ×
∂ ∂ ∂

                      

∂
∏

∑ ∑ ∑ ∑∏ ∏ s

s s ss

s

ss
s ss s s

s s s ss

( ) ( )

1 1 2
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2

1 ( , ,.., )

( 1)
1 1

1 1 1 nestnest, and
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ii i i
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i i
i i i

M ii i

S

S

q r q
qS S

CNEV i i i i r

r ii
i

F Y Y sum X

θ

θ θα α

= ∈

− + −

= = = ∈∈
∈

 
 
 
 
 

         = ×              

∑ ∏

∑ ∑ ∑ ∑∏ s

s s ss

s

s

s s

s s s s

s s
s s s ss1 1 21 ( , ,.., )

K

i M

S

S= ∈

 
 
 
 
 

∑ ∏
s s s s

                 (19) 

 Using Equation (19) in Equation (4) and following the MDCNEV derivations of Pinjari 

and Bhat (2010), one can derive the following MDCGEV consumption probabilities with cross-

nested errors (derivation details are available with the author):  
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                 (20) 

 One may note from the probability expression in Equation (20) that the multiple discrete-

continuous consumption probabilities with cross-nested error terms can be expressed as a 

summation of several terms. The number of terms in the summation is equal to the number of 

different mutually exclusive nesting combinations (or partitions) of the M chosen alternatives 

1 2
( , , .., )

M
s s s  that can be formed from the given cross-nested structure.5 Each of these terms in the 

summation in turn contains a summation of 
1 2( , ,.., )

i

i MS

q
∀ ∈

∏ s
s s s s

terms, where 
i

qs  is the number of 

chosen alternatives in nest 
i
s  of the specific mutually exclusive nesting structure or partition 

1 2
( , , .., )

M
s s s  of the M chosen alternatives. These nuances can be best explained using specific 

examples, as in the next section. 

 

                                                 

5This number is equal to the number of terms in the summation [ ]
1 21 1 1

.. .
K K K

M

S S S

= = =
∑∑ ∑
s s s

 in Equation (20).  It should be 

noted, however, that the terms in this summation do not necessarily represent the consumption probabilities as such 

from the mutually exclusive nested structure given by 
1 2

( , , .., )
M

s s s . This is because these terms include 

( )
th

1

nest

i
i

i

i i

i

Y θα
∈
∑ ss
s

 and ( )
th

1/

1 nest

K

i

S
V

i

i

H e

θ
θ

α
= ∈

 
=  

 
∑ ∑

s
s

s
s s

 which are obtained from the primary cross-nested 

structure, not from the mutually exclusive nested structure given by 
1 2

( , , .., )
M

s s s . The term “mutually exclusive 

nested structure” is used here for the convenience of counting the number of terms in the 

summation [ ]
1 21 1 1

.. .
K K K

M

S S S

= = =
∑∑ ∑
s s s

. 
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3.3 Examples of MDCGEV Models with General Cross-Nested Errors 

The probability expression derived in Equation (20) can be used with different types of cross-

nested error structures, including simple cross-nested errors (e.g. Vovsha, 1997), pair-wise 

correlated errors (Chu, 1989; Wen and Koppelman, 2001), and Ordered GEV type of errors 

(Small, 1987). In this section, we illustrate the form of probability expressions for a simple cross-

nested structure (Section 3.3.1) and describe the form of probability expressions for the pair-wise 

correlated error structure (Section 3.3.2).  

3.3.1 A simple Cross-nested Error Structure 

Consider a simple cross-nested structure { } { }{ }1,2,3 , 3,4 that has 4 elemental alternatives in two 

overlapping nests labeled as A and B, respectively. Specifically, alternative 3 belongs to two 

nests A = { }1,2,3  and B = { }3,4 . From this cross-nested structure, one can form two mutually 

exclusive nested structures (or partitions): { } { }{ }1,2,3 , 4 , and { } { }{ }1,2 , 3,4 , as below:  

 

 

 

 

 

Following Wen and Koppelan (2001), define the CDF of this error structure as: 

( ){ } ( ){ }1/ 1/1/ 1/ 1/

1 2 3 4 1 2 3 3 3 3 4

3 3

( , , , ) exp

where , and ( ) 1

A B
A BA A B

i

CNEV A B

i A B

F Y Y Y Y Y

Y e

θ θθ θθ θ θ

ε

ε ε ε ε α α

α α−

 = − + + + +  

= + =

       (21) 

Now, define ( ) ( ) ( )31 2

11 1

3
AA A

VV V

Ae e e θθ θ α
 

+ + 
 

 as Ah , ( ) ( )3 4

1 1

3
B B

V V

B e eθ θα
 

+ 
 

 as Bh , and 

( ) ( ) ( ) ( ) ( )3 31 2 4

1 11 1 1

3 3

A B

A BA BA
V VV V V

A Be e e e e

θ θ

θ θθ θ θα α
   

+ + + +   
   

as h . Using this notation, for the 

above nesting structure, the consumption probabilities for some selected consumption patterns 

are given by the following expressions: 

 

� + 

1 2 3 4 1 2 3 4 1 2 3 4 
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( )
( )
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1
1

*

1 11
( ,0,0,0) | | ( ) 0!

A
A

A
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A

A

e h
P t J sum X

h h

θθ
        = ×          

           (22) 
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( ) ( )1 2

1 1
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1 2 1 22
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( )

( ) ( )
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( )3 3

1 1
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3 1 11 1
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h
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( ) ( )
1 1 1

1 1 1 2( ) ( ) 2! ( ) ( ) 1!

A B

A B A B

A Bh h
sum X sum X sum X sum X

h h

θ θ            +             

                 (26) 

where, 1( )
A

sum X =1, 1( )
B

sum X = 1, 2 1( ) ( ) /
A A Asum X θ θ−= , and 2 1( ) ( ) /

B B Bsum X θ θ−= . 

As one may observe from the above expressions, the probability expressions that involve 

a non-zero consumption of alternative three (that belongs to more than one nest) are a sum of 

two terms, each corresponding to a mutually exclusive nesting structure (or partitioning) of the 

chosen alternatives that can be formed from the given cross nesting structure. Each of these 

terms in turn contains a summation of 
1 2( , ,.., )

i

i MS

q
∀ ∈

∏ s
s s s s

terms. For example, the first lines of 

Equations (25) and (26) are based on the mutually exclusive nesting structure { } { }{ }1,2,3 , 4 , 

whereas the second lines of these Equations are based on the mutually exclusive nesting 
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structure { } { }{ }1,2 , 3,4 . The terms Ah , Bh , and h  in these equations, however, are obtained from 

the primary cross-nesting structure { } { }{ }1,2,3 , 3,4 . 

3.3.2 The Pair-wise Correlated Error Structure 

Wen and Koppelman (2001) used the following pair-wise correlated error structure (a more 

general form of the paired combinatorial logit (PCL) structure used by Chu, 1989 and 

Koppelman and Wen, 2000) in the context of single discrete choice analysis: 

( ) ( ){ }
1 1

1/ 1/

1 2 , , ,

1 1 1

( , ,.., ) exp ; and 1
ij

ij ij
i

K K k

PGEV K i ij i j ij j i i ij

i j i i

F Y Y Y e
θθ θ εε ε ε α α α

− −
−

= = + =

 
= − + = = 

 
∑ ∑ ∑     (27) 

In the above error structure, each alternative pair (denoted by ij) represents a nest. The number of 

such alternative pairs (or nests) for a total of K choice alternatives = K(K-1)/2, and the number of 

nests to which each alternative may be allocated = K-1. The same error structure can be used for 

multiple discrete-continuous choice situations, and Equation (20) can be used to write the 

consumption probability expressions. The resulting expression will be a summation of terms 

over a total of ( 1)MK − number of mutually exclusive nesting combinations (or partitioning 

combinations) of the M chosen alternatives. The number of summations within each of these 

terms (i.e., the value of 
1 2( , ,.., )

i

i MS

q
∀ ∈

∏ s
s s s s

) can range anywhere from 1 to 22
M 

  , because 
i

qs can 

take either a value of 1 or a value of 2.  

 

4 EMPIRICAL ANALYSIS 

4.1 Empirical Context  

We employed the MDCGEV model with cross-nested errors to an empirical case of household 

transportation expenditures, using the 2002 Consumer Expenditure (CEX) Survey (conducted by 

the Bureau of Labor Statistics; BLS, 2003) data obtained from the archives of the National 

Bureau of Economic Research (NBER, 2003). The final sample used in this analysis consists of 

data from 4101 households, of which data from 4000 households were used for model estimation 

and data from the remaining 101 households were kept aside for model validation. The details of 

the data and sample extraction are available in Ferdous et al., (2010) who originally extracted 

and processed the data for an analysis of household expenditures in 17 categories that range from 

housing, food, and utilities, to a variety of transportation alternatives. The current study limits the 
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analysis to transportation expenditures only. Specifically, the focus is on the proportion of annual 

income spent in the following transportation categories: (1) Vehicle purchase, (2) Gasoline and 

motor oil (termed as gasoline in the rest of the document), (3) Vehicle insurance, (4) Vehicle 

maintenance, (5) Air travel, and (6) Public transportation. Along with these 6 transportation 

expenditure categories, the analysis includes an “other” category that includes all other expenses 

and the remaining portion of the annual income (if any). The proportions of expenditures in all 

these 7 alternatives add up to 100. While the expenditure proportions in the transportation 

categories can be zero for some households, those in the “other” category are greater than zero 

for all households. That is, the “other” category acts as an “outside” good (or essential Hicksian 

good) in the model specification.  

4.2 Model Specification  

Several model specifications were explored in this empirical analysis. The model specification 

process started with the determination of the best MDCEV specification. Subsequently, several 

mutually exclusive nesting (i.e., MDCNEV) specifications were estimated – with two-alternative 

nests, three-alternative nests, a four-alternative nest, a five alternative-nest, and a six-alternative 

nest. Among these MDCNEV specifications, a four-alternative nested model (with all four, 

personal vehicle transportation related expenditures – vehicle purchase, gasoline, vehicle 

insurance, and vehicle maintenance – in the nest) provided the best data fit. Subsequently, to 

guide the cross-nesting explorations, the two-alternative nests that did not yield statistically 

significant nesting parameters were used to eliminate certain cross-nesting specifications. Thus, 

all cross-nesting explorations were with the four, personal vehicle transportation-related 

alternatives. Specifically, in each cross-nesting exploration, one (subsequently, two) of the four 

alternatives was (were) allocated to more than one nest. From all these trials, a cross-nested 

model with two overlapping nests – a {vehicle purchase, gasoline} nest, and a {gasoline, vehicle 

insurance, vehicle maintenance} nest – provided the best data fit.6 

Model estimations were carried out by coding the log-likelihood functions within the 

maximum likelihood module of GAUSS matrix programming language; constraints on the 

nesting parameters and allocation parameters were ensured by employing logit functional forms. 

                                                 
6Exploration of the pair-wise correlated specification (within the four alternatives) was deemed unnecessary because 

some of the two-alternative, mutually exclusive nested specifications did not yield significant nesting parameters. 

Further, in some specifications, the allocation parameter estimates indicated the absence of certain cross nests.         
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After determining the best fitting cross-nested model, the allocation parameters of this model 

were parameterized as a logit function of household socio-demographic attributes to explore the 

presence of systematic heterogeneity in inter-alternative covariance.7 

4.3 Model Estimation Results   

Table 1 shows the results of the best MDCEV specification, the MDCNEV specification with the 

best model fit, and two cross-nested specifications – the best-fit cross-nested model with no 

heterogeneity in allocation parameters, and the best-fit cross-nested model with heterogeneity in 

allocation parameters. In all these models, the parameters in the deterministic part of the utility 

function include baseline utility parameters (baseline constants, household socio-demographic, 

residential location and regional attribute effects), and translation ( kγ ) parameters (satiation 

parameters were constrained to be zero). All these parameters have reasonable and expected 

substantive interpretations that are similar to those found in Ferdous et al., (2010). However, the 

magnitudes (and t-statistics) of several parameters corresponding to the alternatives included in 

the nests (especially the translation parameter for the vehicle purchase alternative) are 

substantially different between the MDCEV and MDCNEV models, and considerably different 

between the MDCNEV and cross-nested models. 

In the MDCNEV model as well as in both the cross-nested models, the nesting 

parameters are highly significantly different from 1 (see the block of rows labeled “Nesting 

Parameters” in the table). In the cross-nested specification with no heterogeneity, the allocation 

parameters, 0.873 and 0.127, are statistically different from 1 and 0, respectively, indicating the 

presence of cross-nested covariance structure. However, the allocation of the gasoline alternative 

is more skewed toward the {gasoline, vehicle insurance, vehicle maintenance} nest (see the first 

two rows in the block of rows labeled “Allocation Parameters”). 

In terms of model fit, the MDCNEV model substantially outperforms the MDCEV model 

based on a nested likelihood ratio test, but it can be rejected in favor of both the cross-nested 

specifications at a significance level less than 0.001 based on a non-nested test. Thus the cross-

nested models clearly outperform the MDCNEV model. Further, it can be observed from the log-

likelihood values (last row of the table) that while the homogenous cross-nested model shows a 

                                                 
7See Newman (2009), who proposed this idea in the context of single discrete choice models, for a detailed 

discussion on the relative ease and advantages of accommodating heterogeneity in allocation parameters as opposed 

to doing so with the nesting parameters. 
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substantial improvement in the log-likelihood from the MDCNEV model, the heterogeneous 

cross-nested model shows a modest (albeit statistically significant) improvement from the 

homogenous cross-nested model. That is, parameterization of the allocation parameters as a logit 

function of socio-demographic attributes resulted in modest improvement in the model fit. 

However, the parameter estimates (of the logit function of the allocation parameters) indicate 

interesting differences in the nesting (hence covariance) patterns among different population 

segments based on income (see the last note at the bottom of the table). Specifically, the 

allocation parameters for low-income (income < 30K) households are highly skewed toward the 

{gasoline, vehicle insurance, vehicle maintenance} nest with a very small value of the allocation 

parameter (0.07) for the {vehicle purchase, gasoline} nest. This result suggests that the {vehicle 

purchase, gasoline} nest is almost absent for low-income households. On the other hand, for 

high-income households, the allocation of the gasoline alternative between the {vehicle 

purchase, gasoline} nest and the {gasoline, vehicle insurance, vehicle maintenance} nest is a bit 

more balanced for than that for low-income households. Such differences in allocation 

parameters between low-income and high-income households can be explained as follows. 

Income is likely to be the primary constraint driving the vehicle purchase decisions of low-

income households (90% of the low-income households in the current estimation data do not 

show any vehicle purchase-related expenditures, while 40% of the high-income households show 

vehicle purchase-related expenditures). Once this effect of income (and other variables, such as 

the number of vehicles already owned by the household) is incorporated in the deterministic 

utility specification, the magnitude of unobserved factors influencing vehicle purchase decisions 

of low-income households may be relatively small compared to that for high-income households. 

As a result, the co-variation between the unobserved factors influencing vehicle purchase 

expenditures and those influencing gasoline expenditures may be relatively small for low-income 

households (hence the absence of the nest with vehicle-purchase gasoline alternatives for low-

income households). Such co-variation, if any, is more likely to be in the context of higher-

income households.      

4.4 Model Evaluation  

The above discussed model estimation results indicate that the cross-nested models are preferred 

specifications (over the MDCEV and MDCNEV specifications) in the current empirical context, 

and that ignoring cross-nesting (and any heterogeneity in cross-nesting) can potentially lead to 
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inferior model fit (and distorted inferences regarding the covariance patterns). Better data fit 

(than the nested and simple non-nested specifications) is certainly a desirable (and perhaps 

expected) feature of the cross-nested models, but it should not be the sole criterion for model 

selection; prediction superiority plays an important role. Thus, the performance of the estimated 

models was tested against a hold-out sample (i.e., a validation sample) of 101 households. 

Specifically, a predictive log-likelihood function (PLLF) was computed using the hold-out 

sample for all the models estimated in the paper. The PLLF was computed by plugging in the 

out-of-sample observations into the log-likelihood function, while retaining the estimated 

parameters from the estimation sample. Table 2 reports the PLLF values for the entire validation 

sample (of 101 households) as well as for different income segments within the sample. As can 

be observed from the first row, The PLLF value for the MDCNEV model is substantially higher 

than that for the MDCEV model, while the PLLF values for both the cross-nested models are 

considerably higher than that for the MDCNEV model. This result suggests that the cross-nested 

models perform better than the simpler MDCNEV model even in the validation sample. This 

trend is consistent for all income-classes. However, between the MDCNEV and the cross-nested 

models, the medium-income segment shows a notable improvement in the PLLF, while the 

improvement in the PLLF value for the other two segments (low- and high-income households) 

is moderate. Further, between the two cross-nested models (see the last two rows in the table), 

the improvement in the PLLF value due to the incorporation of heterogeneity in allocation 

parameters is rather small.  

Overall, the predictive log-likelihood based measures discussed in this section suggest 

that the cross-nested models perform better than the MDCNEV model. However, there is no 

convincing evidence that the cross-nested model with income-based heterogeneity in allocation 

parameters performs better than the cross-nested model without such heterogeneity. To better 

understand the value of cross-nested models over simpler models and to further assess the value 

of incorporating heterogeneity in the allocation parameters, it is important to conduct extensive 

policy prediction analyses or simulation experiments. In this context, it is necessary to first 

develop methods to simulate multivariate extreme value distributions with cross-nested and other 

GEV-based correlation patterns.8  

                                                 
8While a handful of studies (McNeil, 2005; Bodea and Garrow, 2006; Wu et al., 2006) discuss procedures to 

simulate nested extreme value distributions, the literature seems to be lacking in studies that simulate cross-nested 
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4.5 Model Computation Time  

An important aspect in the context of complex models as described in this paper is the 

computation time (or run-time) for model estimation. Pinjari and Bhat (2010) report very high 

run times (about 10 hours) for an MDNEV model estimation in their empirical context with 32 

choice alternatives and 6167 decision-makers. As they indicated, such a high run-time may be 

attributed largely to the fact that only the likelihood function was coded and the analytical 

gradients were not explicitly provided to the log-likelihood optimization routine. The cross-

nested model estimation code used for the current paper builds on the MDCNEV code used in 

Pinjari and Bhat (2010), but also incorporates some changes that enhance computational 

efficiency, although the analytical gradients have not been coded yet. In the current empirical 

context with 4000 households and 7 choice alternatives, it took 11 minutes to estimate the 

MDCEV model, 15 minutes to estimate the MDCNEV model, 33 minutes to estimate the cross-

nested model without heterogeneity, and 58 minutes to estimate the cross-nested model with 

heterogeneity in allocation parameters. For comparison purposes, all the run-times reported here, 

including the run-time for the MDCEV model are based on model estimation codes without 

analytical gradients.9 In addition, all these run-times are based on default starting values for the 

parameters, such as zeros for the coefficients in the deterministic utility function and ones for 

nesting parameters.10 When compared to the run times reported in Pinjari and Bhat (2010), the 

relatively lower run-times in the current empirical context can be attributed primarily to the 

smaller number of choice alternatives. However, in complex choice situations with large number 

of choice alternatives and very general cross-nesting structures, the issue of model run times is 

anything but trivial. In such situations, it is anticipated that coding the gradients of the log-

likelihood function can help reduce the run-times substantially.  

 

5. SUMMARY AND CONCLUSIONS 

This paper derives the class of multiple discrete-continuous generalized extreme value 

(MDCGEV) models, a general class of multiple discrete-continuous choice models based on 

                                                                                                                                                             
and other GEV distributions (see McFadden, 1999 for a Markov Chain Monte Carlo procedure to generate random 

draws that approximate GEV distributions). 
9 For the MDCEV model, the estimation code with analytical gradients takes less than 2 minutes for convergence. 

All the run times reported here are for a dual core computer of 2.66GHz processing speed and 3.5GB RAM.   
10 The estimation times of the cross-nested models reduced by half when the MDCEV model estimates were 

provided as the starting values for the parameters in the deterministic utility function. 
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generalized extreme value (GEV) error specifications. Specifically, the paper proves the 

existence of, and derives the general form of, closed-form consumption probability expressions 

for multiple discrete-continuous choice models with generalized extreme value (GEV) error 

structures. In addition to deriving the general form, the paper derives a more compact and readily 

usable form of consumption probability expressions that can be used to estimate multiple 

discrete-continuous choice models with cross-nested error structures. While the former task 

builds on McFadden (1978)’s derivation of the GEV models for single discrete choice occasions, 

the latter task builds on the recent MDCNEV model development by Pinjari and Bhat (2010). 

 The cross-nested model is applied to analyze household annual expenditure patterns in 

various transportation-related expenses using data from a consumer expenditure survey in the 

United States. The model estimation results highlight the superiority of the cross-nested model 

over the MDCNEV and the simpler MDCEV model specifications in terms of model fit. Further, 

the cross-nested model was amenable to accommodation of demographic heterogeneity in inter-

alternative covariance across decision-makers through a parameterization of the allocation 

parameters. Such a heterogeneous cross-nested model suggested heterogeneity in the nesting 

patterns in the population based on household income levels. When evaluated against a 

validation sample, both the cross-nested models performed better than the simpler nested 

(MDCNEV) and non-nested (MDCEV) models. However, there is no significant difference in 

performance between the cross-nested model with demographic heterogeneity (in the allocation 

parameters) and the cross-nested model without heterogeneity.   

In the context of these developments, it is important to understand the substitution 

properties of closed-form multiple discrete-continuous choice models with cross-nested error 

structures vis-à-vis models with simple nested and non-nested errors. To this end, there is an 

immediate need for methods to easily and accurately simulate GEV distributions. Another 

interesting avenue for subsequent work would be to incorporate network-GEV type of error 

structures (as in Daly and Bierlaire, 2006) in multiple discrete-continuous choice models.   
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APPENDIX A 

From Equation (8), the multiple discrete-continuous choice probability is as below11: 
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The above expression can be split into a sum of several integrals as below: 
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11In this equation, MQ  is expanded and arranged in such a way that each row of the terms in the expansion of MQ  

is a sum of several terms, with each term in the row having the same number of partial derivatives. That is, the term 

in the first row, ( )1 2.. MGG G ,  is a product of M number of partial derivatives. Similarly, each term in the second 

row is a product of M-1 number of partial derivatives, each term in the third row is a product of M-2 number of 

partial derivatives, and so on. This arrangement will be useful toward the end of the proof. 
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To solve each integral in (A2), consider: 
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th
 order partial derivative of G evaluated at 1 1 ( 1,2,..., ).i iV V i Kε ε= − + ∀ =  Using 

mathematical induction (details are available with the author), one can show that: 
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Now, from equation (A2), consider an arbitrarily chosen integral, and express it in a 

general form as: 

( ) ( )
1 11 1

1 11 1
1 1

1 1

1 1

Prod( ) Prod( )i i

i ii i

i ii i

M M

GEV GEV V VV V
i i V VV V

I e G F d e G F d
ε ε

ε εε ε
ε εε εε ε

ε ε− −

= − += − +
= = = − += − +

+∞ +∞

=−∞ =−∞

 
= =   

 
∏ ∏∫ ∫ɶ ɶ

                (A5)  

In this integral, ( )Prod( )Gɶ  represents the product of partial derivatives of G of various orders. 

Without loss of generality, let there be N partial derivatives in ( )Prod( )Gɶ  and let the order of 

these partial derivatives be M1, M2,..., MN (the reader will note that M1+ M2 +...+ MN = M). 

Based on this information, the integral I can be rewritten as: 
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where ( )Prod( )Hɶ  represents the product of partial derivatives of H of various orders. 

Further, based on Equation (5) and the properties of the homogeneous function G, by expanding 

GEVF , the integral can be rewritten as: 
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The above integral, after applying integration by parts in a repeated fashion, results in the 

following closed-form expression (details are available with the author):   
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 Using the above form of analytical expression for the integrals, the probability expression 

of Equation (A2) can be expressed in a closed-form as below: 
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Table 1. Model Estimation Results 

 
MDCEV MDCNEV 

Cross-Nested 

Model with No 

Heterogeneity 

Heterogeneous 

Cross-nested 

Model 

Baseline Utility Parameters Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

Baseline Constants         

   Vehicle purchase -6.955 -67.12 -6.487 -74.17 -6.757 -70.12 -6.861 -65.19 

   Gasoline/oil -1.255 -10.21 -1.913 -18.71 -1.675 -14.59 -1.691 -14.60 

   Vehicle insurance -3.333 -57.10 -3.800 -53.06 -3.671 -51.60 -3.668 -51.57 

   Vehicle maintenance -2.751 -42.00 -3.487 -44.88 -3.246 -41.45 -3.243 -41.42 

   Air travel -6.058 -72.53 -6.035 -73.85 -6.050 -73.73 -6.052 -73.80 

   Public transit -6.092 -49.49 -6.082 -48.40 -6.063 -48.36 -6.063 -48.35 

No of workers in household         

   Vehicle purchase 0.160 4.19 0.117 3.46 0.108 2.90 0.097 2.63 

   Gasoline/Oil 0.190 5.46 0.183 5.76 0.197 6.22 0.199 6.41 

   Vehicle Insurance 0.066 2.50 0.066 2.28 0.072 2.43 0.071 2.42 

   Vehicle Maintenance 0.157 6.32 0.140 4.94 0.152 5.34 0.150 5.31 

Annual HH income 30-70K          

   Vehicle purchase 0.869 8.49 0.607 9.33 0.795 8.96 0.929 8.85 

   Gasoline/oil -0.379 -4.89 -0.334 -8.12 -0.343 -7.18 -0.334 -7.01 

   Air travel 0.871 9.68 0.875 10.03 0.905 10.20 0.907 10.23 

Annual HH income >70K         

   Vehicle purchase 0.873 7.26 0.684 8.92 0.765 6.88 0.967 7.88 

   Gasoline/oil -0.902 -8.27 -0.733 -12.34 -0.745 -11.01 -0.735 -10.67 

   Vehicle insurance -0.343 -4.79 -0.206 -4.57 -0.234 -4.53 -0.241 -4.63 

   Air travel 1.434 12.91 1.441 13.83 1.456 13.71 1.460 13.74 

Number of vehicles in household         

   Vehicle purchase 0.208 9.94 0.211 11.52 0.195 9.46 0.188 9.14 

   Gasoline/oil 0.123 4.92 0.156 7.85 0.139 6.89 0.140 7.23 

   Vehicle insurance 0.095 5.45 0.113 6.39 0.093 4.92 0.093 4.98 

   Vehicle maintenance 0.099 5.19 0.115 6.24 0.096 4.94 0.096 5.00 

Zero-car household (dummy variable)         

   Gasoline/oil -3.109 -25.23 -2.355 -25.65 -2.895 -24.81 -2.900 -24.48 

   Vehicle insurance -3.246 -16.65 -2.667 -21.86 -3.571 -19.82 -3.580 -19.68 

   Vehicle maintenance -2.474 -19.17 -1.932 -21.54 -2.601 -19.08 -2.606 -19.04 

   Public Transit 1.099 10.99 1.315 13.47 1.126 11.38 1.120 11.31 

Non-Caucasian HH – Public transit 0.288 4.01 0.256 3.32 0.265 3.48 0.264 3.47 

Urban location – Public transit 0.543 4.60 0.550 4.52 0.552 4.54 0.552 4.54 

North East Region – Public transit 0.711 10.07 0.740 9.74 0.734 9.76 0.734 9.77 

Western Region – Public transit 0.608 9.41 0.604 8.70 0.606 8.83 0.605 8.83 
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Table 1 (Continued.) Model Estimation Results 

 
MDCEV MDCNEV 

Cross-Nested 

Model with No 

Heterogeneity 

Heterogeneous 

Cross-nested 

Model 

Translation ( kγ ) Parameters Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 

   Vehicle purchase 19.674 11.98 37.528 12.18 22.712 11.60 22.842 11.70 

   Gasoline/oil 0.098 8.58 0.149 10.64 0.120 9.61 0.120 9.53 

   Vehicle insurance 0.515 18.90 0.854 21.23 0.682 19.42 0.681 19.38 

   Vehicle maintenance 0.229 17.54 0.528 18.48 0.371 16.67 0.370 16.64 

   Air travel 0.631 15.13 0.598 15.04 0.605 15.04 0.605 15.04 

   Public transit 0.204 19.19 0.193 18.98 0.195 19.01 0.195 19.01 

Nesting Parameters*         

  θ {vehicle purchase, gasoline,     

        vehicle insurance, maintenance} 
  0.628 34.99     

  θ {gasoline, vehicle insurance, vehicle  

        maintenance} 
    0.701 22.00 0.704 21.71 

  θ {vehicle purchase, gasoline}     0.409 20.32 0.364 24.96 

Allocation Parameters         

   Allocation parameter for the {gasoline,   

      vehicle insurance, maintenance} nest**   

      vehicle insurance, maintenance} nest** 

    0.873 8.08   

   Allocation parameter for the {vehicle  

      purchase, gasoline} nest** 
    0.127 8.08   

   Logit function of the allocation     

      parameter  for the {gasoline, vehicle   

      insurance, maintenance} nest ***    

   vehicle maintenance} nest*** 

        

        Constant       2.568 13.44 

        Annual HH income 30-70K       -0.635 -3.05 

        Annual HH income >70K       -1.071 -4.53 

Log-likelihood at constants -42265 -42265 -42265 -42265 

Log-likelihood at convergence -40703 -39111 -38786 -38778 

 
* The reported t-statistics for the nesting parameters are against a value of 1. 

 

** The reported t-statistic for the allocation parameter corresponding to the {gasoline, vehicle insurance, maintenance} nest is against 

a value of 1, while that for the {vehicle purchase, gasoline} nest is against a value of 0. 

 

***Based on the parameter estimates of this logit function, the allocation parameters for low-income households can be computed as: 

( )exp(2.568) / 1 exp(2.568)+ = 0.93 for the {gasoline, vehicle insurance, maintenance} nest and ( )1 / 1 exp(2.568)+ = 0.07 for the 

{vehicle purchase, gasoline} nest. The allocation parameters for high-income households can be computed as: 

( )exp(2.568 1.071) / 1 exp(2.568 1.071)− + − = 0.82 for the {gasoline, vehicle insurance, maintenance} nest and 

( )1 / 1 exp(2.568 1.071)+ − = 0.18 for the {vehicle purchase, gasoline} nest. 
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Table 2. Predictive Log-Likelihood-based Measures of Fit in the Validation Sample 
 

  Predictive Log-Likelihood Function (PLLF) 

 No. of 

Households 
MDCEV MDCNEV 

Cross-Nested 

Model with No 

Heterogeneity 

Heterogeneous 

Cross-nested 

Model 

 All Households 101 -1037.96 -1001.59 -994.51 -993.86 

    Low-income HHs 26    -245.30    -235.59 -234.75 -234.39 

    Medium-income HHs 51    -548.38    -529.37 -524.39 -524.12 

    High-income HHs 24    -244.28    -236.62 -235.37 -235.34 

 

 

 


