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CHAPTER 6:  DURATION  MODELING 

 

1.  INTRODUCTION 

Hazard-based duration models represent a class of analytical methods which are appropriate for 

modeling data that have as their focus an end-of-duration occurrence, given that the duration has 

lasted to some specified time (Kiefer 1988; Hensher and Mannering 1994). This concept of 

conditional probability of termination of duration recognizes the dynamics of duration; i.e., it 

recognizes that the likelihood of ending the duration depends on the length of elapsed time since 

start of the duration. 

Hazard-based models have been used extensively for several decades in biometrics and 

industrial engineering to examine issues such as life-expectancy after the onset of chronic diseases 

and the number of hours of failure of motorettes under various temperatures. Because of this initial 

association with time till failure (either of the human body functioning or of industrial components), 

hazard models have also been labeled as “failure-time models”. However, the label “duration 

models” more appropriately reflects the scope of application to any duration phenomenon. 

Two important features characterize duration data. The first important feature is that the data 

may be censored in one form or the other. For example, consider survey data collected to examine 

the time duration to adopt telecommuting from when the option becomes available to an employee 

(Figure 1). Let data collection begin at calendar time A and end at calendar time C. Consider 

individual 1 in the figure for whom telecommuting is an available option prior to the start of data 

collection and who begins telecommuting at calendar time B. Then, the recorded duration to 

adoption for the individual is AB, while the actual duration is larger because of the availability of the 
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telecommuting option prior to calendar time A. This type of censoring from the left is labeled as left 

censoring. On the other hand, consider individual 2 for whom telecommuting becomes an available 

option at time B and who adopts telecommuting after the termination of data collection. The 

recorded duration is BC, while the actual duration is longer. This type of censoring is labeled as 

right censoring. Of course, the duration for an individual can be both left- and right-censored, as is 

the case for individual 3 in Figure 1. The duration of individual 4 is uncensored.  

FIGURE 1 ABOUT HERE 

The second important characteristic of duration data is that exogenous determinants of the 

event times characterizing the data may change during the event spell. In the context of the 

telecommuting example, the location of a person's household (relative to his or her work location) 

may be an important determinant of telecommuting adoption. If the person changes home locations 

during the survey period, we have a time-varying exogenous variable. 

The hazard-based approach to duration modeling can accommodate both of the 

distinguishing features of duration data; i.e., censoring and time-varying variables; in a relatively 

simple and flexible manner. On the other hand, accommodating censoring within the framework of 

traditional regression methods is quite cumbersome, and incorporating time-varying exogenous 

variables in a regression model is anything but straightforward. 

In addition to the methodological issues discussed above, there are also intuitive and 

conceptual reasons for using hazard models to analyze duration data. Consider again that we are 

interested in examining the distribution across individuals of telecommuting adoption duration 

(measured as the number of weeks from when the option becomes available). Let our interest be in 

determining the probability that an individual will adopt telecommuting in 5 weeks. The traditional 

regression approach is to specify a probability distribution for the duration time and fit it using data. 
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The hazard approach, however, determines the probability of the outcome as a sequence of simpler 

conditional events. Thus, a theoretical model we might specify is that the individual re-evaluates the 

telecommuting option every week and has a probability λ  of deciding to adopt telecommuting each 

week. Then the probability of the individual adopting telecommuting in exactly 5 weeks is simply 

λλ ×− 4)1( . (Note that λ  is essentially the hazard rate for termination of the non-adoption period). 

Of course, the assumption of a constant λ  is rather restrictive; the probability of adoption might 

increase (say, because of a “snowballing” effect as information on the option and its advantages 

diffuses among people) or decrease (say, due to “inertial” effects) as the number of weeks increases. 

Thus, the “snowballing” or “inertial” dynamics of the duration process suggest that we specify our 

model in terms of conditional sequential probabilities rather than in terms of an unconditional direct 

probability distribution. More generally, the hazard-based approach is a convenient way to interpret 

duration data the generation of which is fundamentally and intuitively associated with a dynamic 

sequence of conditional probabilities. 

As indicated by Kiefer (1988), for any specification in terms of a hazard function, there is an 

exact mathematical equivalent in terms of an unconditional probability distribution. The question 

that may arise is then why not specify a probability distribution, estimate the parameters of this 

distribution, and then obtain the estimates of the implied conditional probabilities (or hazard rates)? 

While this can be done, it is preferable to focus directly on the implied conditional probabilities (i.e., 

the hazard rates) because the duration process may dictate a particular behavior regarding the hazard 

which can be imposed by employing an appropriate distribution for the hazard. On the other hand, 

directly specifying a particular probability distribution for durations in a regression model may not 

immediately translate into a simple or interpretable implied hazard distribution. For example, the 
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normal and log-normal distributions used in regression methods imply complex, difficult to 

interpret, hazards that do not even subsume the simple constant hazard rate as a special case. To 

summarize, using a hazard-based approach to modeling duration processes has both methodological 

and conceptual advantages over the more traditional regression methods.  

In this chapter the methodological issues related to specifying and estimating duration 

models are reviewed. Sections 2–4 focus on three important structural issues in a hazard model for a 

simple unidimensional duration process: (i) specifying the hazard function and its distribution 

(Section 2); (ii) accommodating the effect of external covariates (Section 3); and (iii) incorporating 

the effect of unobserved heterogeneity (Section 4). Sections 5–7 deal with the estimation procedure 

for duration models, miscellaneous advanced topics related to duration processes, and recent 

transport applications of duration models, respectively. 

 

2.  THE HAZARD FUNCTION AND ITS DISTRIBUTION 

Let T be a non-negative random variable representing the duration time of an individual (for 

simplicity, the index for the individual is not used in this presentation). T may be continuous or 

discrete. However, discrete T can be accommodated by considering the discretization as a result of 

grouping of continuous time into several discrete intervals (see later). Therefore, the focus here is on 

continuous T only. 

The hazard at time u on the continuous time-scale, ),(uλ  is defined as the instantaneous 

probability that the duration under study will end in an infinitesimally small time period h after time 

u, given that the duration has not elapsed until time u (this is a continuous-time equivalent of the 

discrete conditional probabilities discussed in the example given above of telecommuting adoption). 

A precise mathematical definition for the hazard in terms of probabilities is 



 
 
 Duration Modeling   5 
 

. 
h

u > T | h +u < T u    u
h

)(Prlim)(
0

≤
=

+→
λ   (1) 

This mathematical definition immediately makes it possible to relate the hazard to the density 

function f(.) and cumulative distribution function F(.) for T. Specifically, since the probability of the 

duration terminating in an infinitesimally small time period h after time u is simply f(u)*h, and the 

probability that the duration does not elapse before time u is 1-F(u), the hazard rate can be written as 
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where )(uS * is a convenient notational device which we will refer to as the endurance probability 

and which represents the probability that the duration did not end prior to u (i.e., that the duration 

“endured” until time u). The duration literature has referred to )(uS as the “survivor probability”, 

because of the initial close association of duration models to failure time in biometrics and industrial 

engineering. However, the author prefers the term “endurance probability” which reflects the more 

universal applicability of duration models. 

The shape of the hazard function has important implications for duration dynamics. One may 

adopt a parametric shape or a non-parametric shape. These two possibilities are discussed below. 

 

2.1.  Parametric Hazard  

In the telecommuting adoption example discussed earlier, a constant hazard was assumed. The 

continuous-time equivalent for this is ( ) uλ σ=  for all u, where σ  is the constant hazard rate. This is  

                                                 

* [ ]( ) exp ( )S u u= −Λ , where 
0

( ) ( )
u

u w dwλΛ = ∫  is called the integrated or cumulative hazard. 
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the simplest distributional assumption for the hazard and implies that there is no duration 

dependence or duration dynamics; the conditional exit probability from the duration is not related to 

the time elapsed since start of the duration. The constant-hazard assumption corresponds to an 

exponential distribution for the duration distribution.  

The constant-hazard assumption may be very restrictive since it does not allow 

“snowballing” or “inertial” effects. A generalization of the constant-hazard assumption is a two-

parameter hazard function, which results in a Weibull distribution for the duration data. The hazard 

rate in this case allows for monotonically increasing or decreasing duration dependence and is given 

by ,)()( 1 u   u  - σασλ α=  0>σ , 0>α . The form of the duration dependence is based on the 

parameter α .  If 1>α , then there is positive duration dependence (implying a “snowballing” effect, 

where the longer the time has elapsed since start of the duration, the more likely it is to exit the 

duration soon). If 1<α , there is negative duration dependence (implying an “inertial” effect, where 

the longer the time has elapsed since start of the duration, the less likely it is to exit the duration 

soon). If 0=α , there is no duration dependence (which is the exponential case). 

The Weibull distribution allows only monotonically  increasing or decreasing hazard 

duration dependence. A distribution that permits a non-monotonic hazard form is the log-logistic 

distribution. The hazard function in this case is given by 
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If 1<α , the hazard is monotonic decreasing from infinity; if 1=α , the hazard is monotonic 

decreasing from σ ; if 1>α , the hazard takes a non-monotonic shape increasing from zero to a 

maximum of σα α /])1[( 1−= /u , and decreasing thereafter. 
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Several other parametric distributions may also be adopted for the duration distribution, 

including the Gompertz, log-normal, gamma, generalized gamma, and generalized F distributions. 

The reader is referred to Hensher and Mannering (1994) for diagrammatic representations of the 

hazard functions corresponding to the exponential, Weibull, and log-logistic duration distributions, 

and Lancaster (1990) and Kalbfleisch and Prentice (2002) for details on other parametric duration 

distributions. Alternatively, one can adopt a general non-negative function for the hazard, such as a 

Box-Cox formulation, which nests the commonly used parametric hazard functions. The Box-Cox 

formulation takes the following form 
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where 0α , kα , and kγ  (k = 1, 2, …, K) are parameters to be estimated. If kk   0∀=α , then we 

have the constant-hazard function (corresponding to the exponential distribution). If 0=kα   for 

(k = 2, 3, …, K), 01 ≠α , and 0   1→γ , we have the hazard corresponding to a Weibull duration 

distribution if we reparameterize as follows: )1(1 −= αα  and )ln(0
αασα = .  

 

2.2.  Non-Parametric Hazard 

The distributions for the hazard discussed above are fully parametric. In some cases, a particular 

parametric distributional form may be appropriate on theoretical grounds. However, a problem with 

the parametric approach is that it inconsistently estimates the baseline hazard when the assumed 

parametric form is incorrect (Meyer 1990). Also, there may be little theoretical support for a 

parametric shape in several instances. In such cases, one might consider using a nonparametric 

baseline hazard. The advantage of using a nonparametric form is that, even when a particular 
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parametric form is appropriate, the resulting estimates are consistent and the loss of efficiency 

(resulting from disregarding information about the distribution of the hazard) may not be substantial 

(Meyer 1987).  

A nonparametric approach to estimating the hazard distribution was originally proposed by 

Prentice and Gloeckler (1978), and later extended by Meyer (1987) and Han and Hausman (1990). 

(Another approach, which does not require parametric hazard-distribution restrictions, is the partial 

likelihood framework suggested by Cox (1972); however, the Cox approach only estimates the 

covariate effects and does not estimate the hazard distribution itself).  

In the Han and Hausman nonparametric approach, the duration scale is split into several 

smaller discrete periods (these discrete periods may be as small as needed, though each discrete 

period should have two or more duration completions). Note that this discretization of the time-scale 

is not inconsistent with an underlying continuous process for the duration data. The discretization 

may be viewed as a result of small measurement error in observing continuous data or a result of 

rounding off in the reporting of duration times (e.g., rounding to the nearest 5 minutes in reporting 

activity duration or travel-time duration). Assuming a constant hazard (i.e., an exponential duration 

distribution) within each discrete period, one can then estimate the continuous-time step-function 

hazard shape. Under the special situation where the hazard model does not include any exogenous 

variables, the above nonparametric baseline is equivalent to the sample hazard (also, referred to as 

the Kaplan-Meier hazard estimate).  

The parametric baseline shapes can be empirically tested against the nonparametric shape in 

the following manner:  
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(1) Assume a parametric shape and estimate a corresponding “nonparametric” model with the 

discrete period hazards being constrained to be equal to the value implied by the parametric 

shape at the mid-points of the discrete intervals. 

(2) Compare the fit of the parametric and nonparametric models using a log (likelihood) ratio 

test with the number of restrictions imposed on the nonparametric model being the number 

of discrete periods minus the number of parameters characterizing the parametric distribution 

shape. 

It is important to note that, in making this test, the continuous parametric hazard distribution is being 

replaced by a step-function hazard in which the hazard is specified to be constant within discrete 

periods but maintains the overall parametric shape across discrete periods. 

 

3.  EFFECT OF EXTERNAL CO-VARIATES 

In the previous section, the hazard function and its distribution were discussed. In this section, a 

second structural issue associated with hazard models is considered, i.e., the incorporation of the 

effect of exogenous variables (or external covariates). Two parametric forms are usually employed 

to accommodate the effect of external covariates on the hazard at any time u: the proportional 

hazards form and the accelerated form. These two forms are discussed in the subsequent two 

sections. Section 3.3 briefly discusses more general forms for incorporating the effect of external 

covariates. In the ensuing discussion, time-invariant covariates are assumed. 

 

3.1.  The Proportional Hazard Form 

The proportional hazard (PH) form specifies the effect of external covariates to be multiplicative on 

an underlying hazard function: 
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0 0( ) ( )u,x, ,  x,λ β φ βλ λ= ,                 (5) 

where 0λ  is a baseline hazard, x is a vector of explanatory variables, andβ  is a corresponding vector 

of coefficients to be estimated. In the PH model, the effect of external covariates is to shift the entire 

hazard function profile up or down; the hazard function profile itself remains the same for every 

individual. 

The typical specification used for )( βφ x,  in equation (5) is xe  x, ββφ ′−=)( . This 

specification is convenient since it guarantees the positivity of the hazard function without placing 

constraints on the signs of the elements of the β  vector. The PH model with xe  x, ββφ ′−=)(  allows a 

convenient interpretation as a linear model. To explicate this, define the integrated hazard 

as: 0
0

( , ) ( )
u

u x u,x, , duλ β λΛ = ∫ . Then, for the PH model with ( ) xx, e βφ β −= , we can write: 
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where )(0 uΛ  is the integrated baseline hazard and ln ( , )u xε = Λ . From the above equation, we can 

write: 
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Also, from equation (2), the endurance function may be written as )](exp[)( uuS Λ−= . The above 

probability is then 

( )
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Thus, the PH model with )'exp()( xx, ββφ −=  is a linear model, εβ +′=Λ xu )(ln 0 , with the 

logarithm of the integrated hazard being the dependent variable and the random term ε  taking a 

standard extreme value form, with distribution function given by 

)]exp(exp[1)()(Prob z zG z −−==<ε .                           (9) 

Of course, the linear model interpretation does not imply that the PH model can be estimated using a 

linear regression approach because the dependent variable, in general, is unobserved and involves 

parameters which themselves have to be estimated. But the interpretation is particularly useful when 

a nonparametric hazard distribution is used (see Section 5.2). Also, in the special case when the 

Weibull distribution or the exponential distribution is used for the duration process, the dependent 

variable becomes the logarithm of duration time. In the exponential case, the integrated baseline 

hazard is uσ  and the corresponding log-linear model for duration time is εβδ +′+= xuln , where  

ln ( )δ σ= − . For the Weibull case, the integrated baseline hazard is ( ) ,u ασ  so the corresponding 

log-linear model for duration time is  , + x +   =u   **ln εβδ  where *ln /  , δ σ β β α= − = , and 

αεε /* = . In these two cases, the PH model may be estimated using a least-squares regression 

approach if there is no censoring of data. Of course, the error term in these regressions is non-

normal, so test statistics are appropriate only asymptotically and a correction will have to be made to 

the intercept term to accommodate the non-zero mean nature of the extreme value error form.  

The coefficients of the covariates can be interpreted in a rather straightforward fashion in the 

PH model of equation (5) when the specification ex, xββφ ′−=)(  is used. If jβ  is positive, it implies 

that an increase in the corresponding covariate decreases the hazard rate (i.e., increases the duration). 

With regard to the magnitude of the covariate effects, when the jth covariate increases by one unit, 

the hazard changes by %100}1)({exp ×−−   jβ .  
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3.2.  The Accelerated Form 

The second parametric form for accommodating the effect of covariates - the accelerated form - 

assumes that the covariates rescale time directly. There are two types of accelerated effects of 

covariates: (1) the accelerated lifetime effect and (2) the accelerated hazards effect.  

3.2.1 The Accelerated Lifetime Effect 

In the accelerated lifetime models, the probability that the duration will endure beyond time u is 

given by the baseline endurance probability computed at a rescaled (by a function of external 

covariates) time value: 

( )

0 0
0

( ) [ ( )] exp ( )
u  x,

S u,x, S  u  x, w dw
φ β

β φ β λ
⎡ ⎤

= = −⎢ ⎥
⎢ ⎥⎣ ⎦

∫             (10)  

The reader will note that the hazard rate in this case is given by: 0( , , ) [ ( )] ( )u x u  x, x,λ β λ φ β φ β= .In 

this model, the effect of the covariates is to alter the rate at which an individual proceeds along the 

time axis. Thus, the role of the covariates is to accelerate (or decelerate) the termination of the 

duration period.  

The typical specification used for )( βφ x,  in equation (10) is )exp()( x  =  x, ββφ ′− . With this 

specification, the accelerated lifetime hazards formulation can be viewed as a log-linear regression 

of duration on the external covariates. To see this, let ln ( )u  = x + β ξ′ . Then, we can write 

Pr( ) Pr[ln( ) ' ]
               Pr{ exp( ' )]}
               1 Pr{ exp( ' )}.

z u x z
u x z

u x z

ξ β
β

β

< = − <
= < +
= − > +

                        (11) 

Next, from the survivor function specification in the accelerated lifetime hazards model, we can 

write the above probability as 
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Thus, the accelerated lifetime hazards model with )exp()( x  =  x, ββφ ′−  is a log-linear model, 

ln( )t xβ ξ′= + , with the density for the error term, ξ , being 0 [exp( )] exp( )  f ξ ξ , where the 

specification of  0f  depends on the assumed distribution for the survivor function 0S . In the absence 

of censoring, therefore, the accelerated lifetime hazards specification can be estimated directly using 

the least-squares technique. The linear model representation of the accelerated lifetime model 

provides a convenient interpretation of the coefficients of the covariates; a one unit increase in the 

jth explanatory variable results in an increase in the duration time by jβ  percent. 

The reader will note that, while the PH model implies a log-linear model for the logarithm of 

the integrated hazard with a standard extreme value distributed random term, the accelerated lifetime 

model implies a log-linear model directly on duration with a general specification for the random 

term. Different duration distributions are implied depending on the dependent variable form used in 

the PH model, and depending on the distribution used for the random term in the accelerated lifetime 

model. Note also that the PH models with exponential or Weibull durational distributions can be 

interpreted as accelerated lifetime models since they can be written in a log-linear form. 

3.2.2 The Accelerated Hazard Effect 

In accelerated hazard effect models, the effect of covariates is such that the hazard rate at time u is 

given by the baseline hazard rate calculated at a rescaled (by a function of external covariates) time 

value (Chen and Wang 2000): ( , , ) [ ( )]u x u  x,λ β λ φ β= . The endurance probability in this case is 

given by: { }
1

( )
0( , , ) [ ( )] x,S u x S u  x, φ ββ φ β= . The difference between the accelerated hazards and the 
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accelerated lifetime effect models is that, in the former, the covariates rescale time in the underlying 

hazard function, while in the latter, the covariates rescale time in the endurance probability function.  

 A unique property of the accelerated hazard effects specification, unlike the accelerated 

failure time and the PH models, is that the covariates do not affect hazard rate at the beginning of a 

duration process (i.e., at time u = 0). This property can be utilized to ensure the same hazard rates 

across all groups of agents at the beginning of a group-specific policy action to accurately measure 

the treatment effects (Chen and Wang 2000). It is also important to note that the accelerated hazards 

model is not identifiable when the baseline hazard function is constant over time. 

Among the several ways discussed above of accommodating covariate effects, the PH and 

the accelerated lifetime models have seen widespread use. Of the two, the PH model  is more 

commonly used. The PH formulation is also more easily extended to accommodate nonparametric 

baseline methods and can incorporate unobserved heterogeneity.  

 

3.3.  General Forms 

The PH and the accelerated forms are rather restrictive in specifying the effect of covariates over 

time. The PH form assumes that the effect of covariates is to change the baseline hazard by a 

constant factor that is independent of duration. The accelerated form allows time-varying effects, but 

specifies the time-varying effects to be monotonic and smooth in the time domain.  

 In some situations, the use of more general time-varying covariate effects may be preferable. 

For example, in a model of departure time from home for recreational trips, the effect of children on 

the termination of home-stay duration may be much more "accelerated" during the evening period 

than in earlier periods of the day, because the evening period is most convenient (from schedule 

considerations) for joint-activity participation with children. This sudden non-monotonic 
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acceleration during a specific period of the day cannot be captured by the PH or the accelerated 

lifetime model. 

A generalized version of the PH and accelerated forms can be obtained by accommodating 

more flexible interaction terms of the covariates and time: 0( ) ( , , ) ( )u   u x  g u,x,λ β βλ= , where the 

functions, 0λ and g can be as general as desired. An important issue, however, in specifying general 

forms is that interpretation (and/or identification) can become difficult; the analyst would do well to 

retain a simple specification that captures the salient interaction patterns for the duration process 

under study. For example, one possibility in the context of the departure time example discussed 

earlier is to specify the hazard function as: 0( ) exp[ ( )]u    g u,x,λ βλ= , and estimate separate effects 

of covariates for each of a few discrete periods within the entire time domain. 

A specific form of the above mentioned general hazard function that nests the PH, 

accelerated lifetime and the accelerated hazard models as special cases 

is: ' '
0 1 2( ) ( exp( ))exp( ) u   u x xλ β βλ=  (Chen et al 2002). Specifically, if 1 0β = , this specification reduces 

to the PH model; if 1 2β β= , the specification reduces to the accelerated lifetime specification; if 

2 0β = , the specification collapses to the accelerated hazard specification. Thus, this specification 

can be used to incorporate the accelerating and/or proportional effects of covariates, as well as test 

the specific covariate effect specifications (i.e. the PH and the accelerated forms) against a general 

specification.  

Market segmentation is another general way of incorporating systematic heterogeneity (i.e., 

the observed covariate effects). Consider, for example, that the duration process in the departure 

time context is different for males and females. This difference can be captured by specifying fully 

segmented duration models for males and females. It is also possible to specify a partially segmented 
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model that includes a few interactions of the gender variable with other covariates.  In a more 

general case, where the duration process may be governed by several higher-order interactions 

among covariates, and the specific market segments cannot be directly observed by the analyst, a 

latent segmentation scheme can be employed. Latent segmentation enables a probabilistic 

assignment of individuals to latent segments based on observed covariates. Separate hazard function 

and/or covariate effects may be estimated for each of the latent segments. Such a market 

segmentation approach can be employed in any of the duration model specifications discussed 

earlier. Bhat et al (2004) and Lee and Timmermans (2006) have applied the latent segmentation 

approach in PH and accelerated lifetime models, respectively. 

 

4.  UNOBSERVED HETEROGENEITY 

The third important structural issue in specifying a hazard duration model is unobserved 

heterogeneity. Unobserved heterogeneity arises when unobserved factors (i.e., those not captured by 

the covariate effects) influence durations. It is now well-established that failure to control for 

unobserved heterogeneity can produce severe bias in the nature of duration dependence and the 

estimates of the covariate effects (Heckman and Singer 1984). Specifically, failure to incorporate 

heterogeneity appears to lead to a downward biased estimate of duration dependence and a bias 

toward zero for the effect of external covariates. 

The standard procedure used to control for unobserved heterogeneity is the random effects 

estimator (see Flinn and Heckman 1982). In the PH specification with cross-sectional data (i.e., one 

duration spell per decision maker), heterogeneity is introduced as follows: 

),'exp()()( 0 wxuu +−= βλλ  (13) 
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where w represents unobserved heterogeneity. This formulation involves specification of a 

distribution for w across decision makers in the population. Two general approaches may be used to 

specify the distribution of unobserved heterogeneity: one is to use a parametric distribution, and the 

second is to adopt a nonparametric heterogeneity specification. Most earlier research has used a 

parametric form to control for unobserved heterogeneity. The problem with the parametric approach 

is that there is seldom any justification for choosing a particular distribution. Furthermore, the 

consequence of a choice of an incorrect distribution on the consistency of the model estimates can be 

severe (see Heckman and Singer 1984). An alternative, more general, approach to specifying the 

distribution of unobserved heterogeneity is to use a nonparametric representation for the distribution 

and to estimate the distribution empirically from the data. This may be achieved by approximating 

the underlying unknown heterogeneity distribution by a finite number of support points, and 

estimating the location and associated probability masses of these support points. 

Unobserved heterogeneity cannot be introduced into the general accelerated lifetime model 

when using cross-sectional data because of identification problems. To see this, note that different 

duration distributions are implied based on the distribution of ξ  in the accelerated lifetime model. 

However, the effects of covariates on the survival distribution of Equation (10), the corresponding 

hazard function, and the resulting probability density function of duration are assumed to be 

systematic. To relax this assumption, write Equation (10) as 0( , , , ) [ , ( , , )],S u x S u xβ ν φ β ν=  where 

'( , , ) exp( ).x xφ β ν β ν= − −  This specification is equivalent to the log-linear model for duration given 

by ln( )u xβ ξ ν′= + + , with the cumulative distribution function of ξ  given by Equation (12) as 

earlier. The usual duration distributions used in the accelerated lifetime models entail the estimation 

of a scale parameter in the distribution of ξ . Consequently, it is not practically possible to add 
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another random error term ν  and estimate a separate variance on this term in the log-linear equation 

of the accelerated lifetime model. Thus, ν  is not identifiable, meaning that unobserved 

heterogeneity cannot be included in the general framework of accelerated lifetime models†. Of 

course, in the special case that the duration distribution is assumed to be exponential or Weibull, the 

distribution of ξ  is standard extreme value (i.e., the scale is normalized) and unobserved 

heterogeneity can be accommodated. But this is because the exponential and Weibull duration 

distributions with an accelerated lifetime specification are identical to a PH specification. 

 

5.  MODEL ESTIMATION 

The estimation of duration models is typically based on the maximum likelihood approach. Here  

this approach is discussed separately for parametric and nonparametric hazard distributions. The 

index i is used for individuals and each individual's spell duration is assumed to be independent of 

those of others. 

 

5.1.  Parametric Hazard Distribution 

For a parametric hazard distribution, the maximum likelihood function can be written in terms of the 

implied duration density function (in the absence of censoring) as follows: 

L )()( βθβθ ,x,,u f    , ii
i
∏= ,                   (14) 

where θ  is the vector of parameters characterizing the assumed parametric hazard (or duration) 

form.  

                                                 
† Strictly speaking, one may be able to estimate the variance of ν  if the distributions of ν  and ξ  are quite 
different. But this is simply an artifact of the different distributions. In general, the model will not be empirically 
estimable if the additional term ν  is included. 
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 In the presence of right censoring, a dummy variable iδ  is defined that assumes the value 1 if 

the ith individual’s spell is censored, and 0 otherwise. The only information for censored 

observations is that the duration lasted at least until the observed time for that individual. Thus, the 

contribution for censored observations is the endurance probability at the censored time. 

Consequently, the likelihood function in the presence of right censoring may be written as 

L { }∏ −=
i

iiii
ii xuSxuf .)],,,([)],,,([ ),( )1( δδ βθβθβθ                                                (15)  

The above likelihood function may be rewritten in terms of the hazard and endurance functions by 

using equation (2): 

L { } .xu S  xu    , ii
iiii

)(

i

δδ βθβθλβθ )],,,([)],,,([ )( 1−∏=                                (16) 

The expressions above assume random (or independent) censoring; i.e., censoring does not provide 

any information about the level of the hazard for duration termination.  

In the presence of unobserved heterogeneity, the likelihood function for each individual can 

be developed conditional on the parameters η  characterizing the heterogeneity distribution function 

J(.). To obtain the unconditional (on η ) likelihood function, the conditional function is integrated 

over the heterogeneity density distribution: 

L ∫∏
Η

=   
i

),( βθ Li )(),,( ηηβθ dJ ,                                            (17) 

where H is the range of η . Of course, to complete the specification of the likelihood function, 

the form of the heterogeneity distribution has to be specified.  

As discussed in Section 4, one approach to specifying the heterogeneity distribution is to 

assume a certain parametric probability distribution for J(.), such as a gamma or a normal 
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distribution. The problem with this parametric approach is that there is seldom any justification for 

choosing a particular distribution. The second, nonparametric, approach to specifying the 

distribution of unobserved heterogeneity estimates the heterogeneity distribution empirically from 

the data.  

 

5.2.  Non-Parametric Hazard Distribution 

The use of a nonparametric hazard requires grouping of the continuous-time duration into discrete 

categories. The discretization may be viewed as a result of small measurement error in observing 

continuous data, as a result of rounding off in the reporting of duration times, or a natural 

consequence of the discrete times in which data are collected.  

Let the discrete time intervals be represented by an index k (k = 1, 2, 3, ..., K) with k = 1 if 

u∈  [0, u1], k = 2 if u ∈  [u1, u2], ..., k = K if u ∈  [uK-1, ∞ ]. Let ti represent the discrete period of 

duration termination for individual i (thus, ti=k if the shopping duration of individual i ends in 

discrete period k). The objective of the duration model is to estimate the temporal dynamics in 

activity duration and the effect of covariates (or exogenous variables) on the continuous activity 

duration time. 

The subsequent discussion is based on a PH model (a non-parametric hazard is difficult to 

incorporate within an accelerated lifetime model). The linear model interpretation is used for the PH 

model since it is an easier starting point for the nonparametric hazard estimation: 

. exp(z)]exp[1  =  (z)G   =  z) < (Pr  where)(ln i0 −−′Λ εεβ   , + x  = u  iii                    (18) 

The dependent variable in the above equation is a continuous unobserved variable. However, we do 

observe the discrete time-period, ti, in which individual i ends his or her duration. Defining ku  as the 

continuous-time value representing the upper bound of discrete time period k, we can write: 
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from equation (18), where ).(ln 0
k

k uΛ=ψ  The parameters to be estimated in the nonparametric 

baseline model are the (K – 1) ψ  parameters )  and  ( 0 +∞=−∞= Kψψ  and the vector β . Defining a 

set of dummy variables 

⎩
⎨
⎧

=
otherwise  0

 individualfor   periodin  occurs failure if   1 ik
M ik                      (20) 

 (i = 1, 2, …, N ;  k = 1, 2, …, K), 

the likelihood function for the estimation of these parameters takes the familiar ordered discrete 

choice form 

L [ ] ikM
ikik

K

k

N

i

xGxG )()( 1
11

βψβψ ′−−′−= −
==
∏∏ .            (21) 

Right censoring can be accommodated in the usual way by including a term which specifies the 

probability of not failing at the time the observation is censored. 

The continuous-time baseline hazard function in the nonparametric baseline model is 

estimated by assuming that the hazard remains constant within each time period k; i.e., 

)()( 00 ku λλ =  for all },{ 1 kk uuu −∈ . Then, we can write: 

 ,K = k   ,
u 

   k k
-kk 1, 2, 1,)exp()exp()( 1

0 −
∆
−

= K
ψψ

λ     (22) 

where ku ∆  is the length of the time interval k. 
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The discussion above does not consider unobserved heterogeneity. In the presence of 

unobserved heterogeneity, the appropriate linear model interpretation of the PH model takes the 

form 

iiii wx  = u ++′Λ εβ)(ln 0 ,                                               (23)  

where iw  is the unobserved heterogeneity component. We can then write the probability of an 

individual's duration ending in the period k, conditional on the unobserved heterogeneity term, as  

)()(]|[ Prob 1 iikiikii wxGwxGwkt +′−−+′−== − βψβψ .                                   (24)  

To continue the development, an assumption needs to be made regarding the distributional 

form for iw . This assumed distributional form may be one of several parametric forms or a 

nonparametric form. We next consider a gamma parametric mixing distribution (since it results in a 

convenient closed-form solution) and a more flexible non-parametric shape. 

For the gamma mixing distribution, consider equation (24) and rewrite it using equations 

(18) and (19): 

)}]exp({exp[)}]exp({exp[]|[ Prob ,1, ikiikiii wIwIwkt −−−== − ,                    (25)  

where )exp()(0 i
k

ik xuI β′−Λ= . Assuming that )]exp([ ii wv =  is distributed as a gamma random 

variable with a mean of 1 (a normalization) and variance 2σ , the unconditional probability of the 

spell terminating in the discrete-time period k can be expressed as 

( ) iiikiiki dvvfvIvIkt )(}]{exp[}]{exp[][ Prob ,1,
0

1 −−−== −

∞

∫            (26)  

Using the moment-generating function properties of the gamma distribution (see Johnson and Kotz 

1970), the expression above reduces to 

22

]1[]1[][ Prob ,
2

1,
2 −− −−

− +−+== σσ σσ kikii IIkt ,                       (27) 
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and the likelihood function for the estimation of the (K-1) integrated hazard elements )(0

kTΛ , the 

vector β , and the variance 2σ  of the gamma mixing distribution is 

L { } ikM
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II  ]1[]1[ 
22
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1,
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11

−− −−
−

==

+−+= ∏∏ σσ σσ      (28) 

For a nonparametric heterogeneity distribution, reconsider equation (23) and approximate the 

distribution of wi by a discrete distribution with a finite number of support points (say, S). Let the 

location of each support point (s = 1, 2, ..., S) be represented by ls and let the probability mass at ls be 

πs. Then, the unconditional probability of an individual i terminating his or her duration in period k is 

[ ]{ }ssisi

S

s
i lxlxkt πβδβδ  )G()G( ][ Prob 1-kk

1

+′−−+′−== ∑
=

.                      (29) 

The sample likelihood function for estimation of the location and probability masses associated with 

each of the S support points, and the parameters associated with the baseline hazard and covariate 

effects, can be derived in a straightforward manner as 
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Since we already have a full set of (K–1) constants represented in the baseline hazard, we impose the 

normalization that 

0 )(
1

==∑
=

ss

S

s
i lwE π  (31) 

The estimation procedure can be formulated such that the cumulative mass over all support points 

sum to one. 

One critical quantity in empirical estimation of the nonparametric distribution of unobserved 

heterogeneity is the number of support points, S, required to approximate the underlying distribution. 
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This number can be determined by using a stopping-rule procedure based on the Bayesian 

information criterion, which is defined as follows: 

ln−=BIC (L) + )ln(5.0 NR ⋅⋅                          (32) 

where the first term on the right-hand side is the log (likelihood) value at convergence, R is the 

number of parameters estimated, and N is the number of observations. As support points are added, 

the BIC value keeps declining till a point is reached where addition of the next support point results 

in an increase in the BIC value. Estimation is terminated at this point and the number of support 

points corresponding to the lowest value of BIC is considered the appropriate number for S. 

 

6.  MISCELLANEOUS OTHER TOPICS 

In this section other methodological topics are briefly discussed, including left censoring, time-

varying covariates, multiple spells, multiple-duration processes, and simultaneous-duration 

processes. 

 

6.1.  Left Censoring 

Left censoring occurs when a duration spell has already been in progress for sometime before 

duration data begins to be collected. One approach to accommodate left censoring is to jointly model 

the probability that a duration spell has begun before data collection by using a binary choice model 

along with the actual duration model. This is a self-selection model and can be estimated with 

specialized econometric software. 
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6.2.  Time-Varying Covariates 

Time-varying covariates occur in the modeling of many duration processes and can be incorporated 

in a straightforward fashion. For example, Bhat and Steed (2002) consider the effect of time-varying 

level-of-service variables in a departure time model for shopping trips. The maximum likelihood 

functions will need to be modified to accommodate time-varying covariates. In practice, regressors 

may change only a few times over the range of duration time, and this can be used to simplify the 

estimation. For the nonparametric hazard, the time-varying covariates have to be assumed to be 

constant for each discrete period. To summarize, there are no substantial conceptual or 

computational issues arising from the introduction of time-varying covariates. However, 

interpretation can become tricky, since the effects of duration dependence and the effect of trending 

regressors is difficult to disentangle. 

  

6.3.  Multiple Spells 

Multiple spells occur when the same individual is observed in more than one episode of the duration 

process. This occurs when data on event histories are available. For example, Hensher (1994) 

considers the timing of change for automobile transactions (i.e., whether a household keeps the same 

car as in the year before, replaces the car with another used one, or replaces the car with a new one) 

over a 12-year period. In his analysis, the data includes multiple transactions of the same household. 

Another example of multiple spells in a transportation context arises in the modeling of home-stay 

duration of individuals during a day; there can be multiple home-stay duration spells of the same 

individual. In the presence of multiple spells, three issues arise. First, there may be lagged duration 

dependence, where the durations of earlier spells may have an influence on later spells. Second, 

there may be occurrence dependence where the number of earlier spells may have a bearing on the 
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length of later duration spells. Third, there may be unobserved heterogeneity specific to all spells of 

the same individual (e.g., all home-stay durations of a particular individual may be shorter than those 

of other observationally equivalent individuals). Accommodating all the three effects at the same 

time is possible, though interpretation can become difficult and estimation can become unstable. The 

reader is referred to Mealli and Pudney (1996) for a detailed discussion. 

 

6.4.  Multiple Duration Processes 

The discussion thus far has focused on the case where durations end as a result of a single event. For 

example, home-stay duration ends when an individual leaves home to participate in an activity. A 

limited number of studies have been directed toward modeling the more interesting and realistic 

situation of multiple-duration-ending outcomes. For example, home stay duration may be terminated 

because of participation in shopping activity, social activity, or personal business. 

Previous research on multiple-duration-ending outcomes (i.e., competing risks) have 

extended the univariate PH model to the case of two competing risks in one of three ways: 

(1) The first method assumes independence between the two risks (see Gilbert 1992). Under 

such an assumption, estimation proceeds by estimating a separate univariate hazard model 

for each risk. Unfortunately, the assumption of independence is untenable in most situations 

and, at the least, should be tested. 

(2) The second method generates a dependence between the two risks by specifying a bivariate 

parametric distribution for the underlying durations directly (see Diamond and Hausman 

1985). 



 
 
 Duration Modeling   27 
 

(3) The third method accommodates interdependence between the competing risks by allowing 

the unobserved components affecting the underlying durations to be correlated (Cox and 

Oakes 1984, page 159-161; Han and Hausman 1990). 

A shortcoming of the competing-risk methods discussed above is that they tie the exit state of 

duration very tightly with the length of duration. The exit state of duration is not explicitly modeled 

in these methods; it is characterized implicitly by the minimum competing duration spell. Such a 

specification is restrictive, since it assumes that the exit state of duration is unaffected by variables 

other than those influencing the duration spells and implicitly determines the effects of exogenous 

variables on exit-state status from the coefficients in the duration hazard models. 

Bhat (1996a) considers a generalization of the Han and Hausman competing-risk 

specification where the exit state is modeled explicitly and jointly with duration models for each 

potential exit state. Bhat's model is a generalized multiple-durations model, where the durations can 

be characterized either by multiple entrance states or by multiple exit states, or by a combination of 

entrance and exit states. 

 

6.5.  Simultaneous Duration Processes 

In contrast to multiple-duration processes, where the duration episode can end because of one of 

multiple outcomes, a simultaneous-duration process refers to multiple-duration processes that are 

structurally interrelated. For example, Lillard (1993) jointly modeled marital duration and the timing 

of marital conceptions, because these two are likely to be endogenous to each other. Thus, the risk of 

dissolution of a marriage is likely to be a function of the presence of children in the marriage (which 

is determined by the timing of marital conception). Of course, as long as the marriage continues, 

there is the "hazard" of another conception. In a transportation context, the travel-time duration to an 
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activity and the activity duration may be inter-related. The methodology to accommodate 

simultaneous-duration processes is straightforward, though cumbersome. The reader is referred to 

Bhat et al (2005) for a simultaneous interepisode duration model for participation in non-work 

activities. 

 

7. CONCLUSIONS AND TRANSPORT APPLICATIONS  

Hazard-based duration modeling represents a promising approach for examining duration processes 

in which understanding and accommodating temporal dynamics is important. At the same time, 

hazard models are sufficiently flexible to handle censoring, time-varying covariates, and unobserved 

heterogeneity.   

 There are several potential areas of application of duration models in the transportation field. 

These include the analysis of delays in traffic engineering (e.g., at signalized intersections, at stop-

sign controlled intersections, at toll booths), accident analysis (i.e., the personal or environmental 

factors that affect the hazard of being involved in an accident), incident-duration analysis (e.g., time 

to detect an incident, time to respond to an incident, time to clear an incident, time for normalcy to 

return), time for adoption of new technologies or new employment arrangements (electric vehicles, 

in-vehicle navigation systems, telecommuting, for example), temporal aspects of activity 

participation (e.g., duration of an activity, travel time to an activity, home-stay duration between 

activities, time between participating in the same type of activity), and panel-data related durations 

(e.g., drop-off rates in panel surveys, time between automobile transactions, time between taking 

vacations involving intercity travel, time between residential moves and employment moves). 

In contrast to the large number of potential applications of duration models in the transport 

field, there were very few actual applications until a few years back. Hensher and Mannering (1994), 
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and Bhat (2000) also point to this lack of use of hazard-based duration models in transport modeling. 

These studies have also reviewed transportation applications until the turn of the century. In the 

recent past, however, the transport field has seen an increasing number of applications of duration 

models. Table 1 lists applications of duration models in the transportation field since 2000.  

Several interesting observations may be made based on Table 1. First, a majority of the 

applications use the proportional hazards form as opposed to the accelerated form. Future research 

may benefit from exploring the use of the accelerated form and more general model structures. Also, 

comparative studies may be required to assess the value of competing model forms. Second, multi-

day data sets have enabled the specification of flexible duration model structures in the area of 

activity participation and scheduling research. Third, most of the hazard based duration modeling 

applications are in the area of activity participation and scheduling research. There are several other 

areas of potential application in transport research.   The hope is that, by laying bare the simple 

underlying technical concepts involved in the formulation of duration models, the present chapter 

will promote the use of duration models in the years to come. 
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Figure 1. Censoring of Duration Data (modified slightly from Kiefer 1998) 
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Table 1. Recent Applications of Duration Models in Transportation Research 
 

Note: PH = Proportional Hazards, ALT = Accelerated Lifetime 

Author(s) Model Structure Empirical Focus Data Source 

Applications in Activity Participation and Scheduling 

Schönfelder  
and Axhausen  
2000 
 

Cox PH and Weibull duration models. 
 

Analysis of rhythms in leisure activities (shopping and 
active sports).  

1999 six week travel diary 
survey conducted in German 
cities of Halle and Karlsruhe. 

Yee and 
Niemeier 2000 

Cox PH model. 
 

Examination of the relationship (and the temporal 
stability of the relationship) between socio-demographics 
and other factors associated with the durations for 
visiting, appointment, free time, personal business and 
shopping activities. Emphasis was placed on higher order 
interactions between explanatory variables.  

Four waves of Puget Sound 
Transportation Panel Survey 

Kemperman et 
al  2002 

Non-parametric hazard-based PH model. 
 

Analysis of the fluctuation in demand for different 
activities during the day in a theme park using duration 
models of activity timing. Assessment of the impact of 
activity type, waiting time, location, duration, visitor and 
context attributes on activity timing. 

Stated preference survey of 
consumer choices in 
hypothetical theme parks 
conducted in Netherlands. 

Popkowski and 
Timmermans 
2002 

Conditional and unconditional competing 
risk and non-competing risk ALT models 
with baseline hazard functions 
corresponding to Weibull, log-normal, 
log-logistic and Gamma duration 
distributions. 

Test the hypothesis that choice and timing of activities 
depends upon the nature and duration of the previous 
activity. 

1997 two-day activity dairy 
data collected in the 
Rotterdam region of 
Netherlands. 

Bhat and Steed 
2002 

Non-parametric hazard-based PH model 
with time varying effect of covariates and 
time-varying covariates. Gamma 
distributed unobserved heterogeneity. 

Analysis of departure time for shopping trips. 1996 household activity-travel 
survey conducted in Dallas-
Fort Worth area by the North 
Central Texas Council of 
Governments (NCTCOG). 

Yamamoto et al 
2003 

Weibull duration and non-parametric 
hazard-based PH models. 

Simulation analysis to examine the impact on the 
estimation efficiency of using non-parametric estimation 
of baseline hazard when the appropriate parametric 
distribution is known.  

Simulated data 
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Table 1. (Applications in Activity Participation and Scheduling,  continued)  

Author(s) Model Structure Empirical Focus Data Source 
Bhat et al 2003 Non-parametric hazard-based PH model 

accommodating individual specific 
sample selection. Normally distributed 
inter-individual unobserved heterogeneity 
and Gamma distributed intra-individual 
unobserved heterogeneity. 

Analysis of the mediation effect of observed socio-
demographics and unobserved factors on the impact of 
information and communication technologies on non-
maintenance shopping activity participation (inter-
episode duration) in a joint framework. 

1999 six week travel diary 
survey conducted in German 
cities of Halle and Karlsruhe. 

Srinivasan and 
Guo 2003 

Joint PH models of simultaneous 
durations with the baseline hazard 
functions corresponding to log-logistic 
duration distribution. Bivariate log-
normal distribution used to correlate 
simultaneous hazards. 

Simultaneous analysis of trip duration and stop duration 
for shopping activities. 

1996 San Francisco Bay Area 
Household Activity Survey.  

Bhat et al 2004 Non-parametric hazard-based PH model 
with separate covariate effects for latently 
segmented erratic and regular shoppers. 
Normally distributed unobserved 
heterogeneity within each segment. 

Analysis of Inter-episode duration of maintenance 
shopping trips to understand day-to-day variability and 
rhythms in shopping activity participation over several 
weeks. 

1999 six week travel diary 
survey conducted in German 
cities of Halle and Karlsruhe. 

Bhat et al 2005 Multivariate non-parametric hazard-based 
PH model. Multivariate Normal inter-
individual unobserved heterogeneity and 
Gamma distributed intra-individual 
unobserved heterogeneity 

Simultaneous analysis of inter-episode durations of 5 
non-work activity types to understand the rhythms and 
behavior of non-work activity participation over several 
weeks. 

1999 six week travel diary 
survey conducted in German 
cities of Halle and Karlsruhe. 

Srinivasan and 
Bhat 2005 

Joint mixed-logit non-parametric hazard-
based PH model. 

Analysis of the role of household interactions in daily 
out-of-home maintenance activity generation and 
allocation. 
 

2000 San Francisco bay Area 
Survey 
 

Ruiz and 
Timmermans  
2006 

Tested exponential, Weibull, normal, 
logistic, and Gamma distributions on the 
duration process. Logistic distribution 
provided the best fit for the data. 

Analysis of timing/duration changes in preplanned 
activities when a new activity is inserted between two 
consecutive preplanned activities.  

Internet based activity 
scheduling survey of staff 
members and students of the 
Technical university of 
Valencia conducted in 
November-December 2003. 

Mohammadian 
and Doherty 
2006 

Cox PH, exponential, Weibull, and log-
logistic duration models. Gamma 
distributed unobserved heterogeneity. 

Analysis of the duration between planning and execution 
of pre-planned activities. Analysis of the effect of explicit 
spatio-temporal activity flexibility characteristics on 
activity scheduling.  

Computerized household 
activity scheduling elicitor 
(CHASE) survey conducted in 
Toronto in 2002–2003. 
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Table 1. (Applications in Activity Participation and Scheduling,  continued)  

Author(s) Model Structure Empirical Focus Data Source 
Lee and 
Timmermans 
2006 

Latent Class ALT model with 
Generalized log-Gamma assumption on 
log(duration). 

Independent activity duration models for 3 out-of-home 
and 2 in-home non work activities on weekdays and 
weekends. 
 

Two-day activity-travel dairies 
collected in Eindhoven and 3 
other cities in Netherlands. 

Nurul Habib 
and Miller 2005 

Non-parametric hazard-based PH model, 
and parametric ALT models with 
Weibull, log-logistic and log-normal 
duration distributions. Household level 
Gamma distributed unobserved 
heterogeneity to correlate hazards of 
persons from same household. 

Analysis of the allocation of time for shopping activities. CHASE survey data from the 
first wave of Toronto Travel-
Activity Panel Survey 
conducted in 2002-2003. 

Applications in Vehicle Transactions Analysis 

Yamamoto and 
Kitamura 2000 

Simultaneous PH model with Weibull 
duration distribution. Vehicle specific 
discrete error components used to 
correlate simultaneous hazards. 

Exploration of the relationship between intended and 
actual vehicle holding durations by estimating 
simultaneous model of intended and actual vehicle 
holding durations 

First two waves of a panel 
survey of households 
conducted in California in 
1993-94. 

Yamamoto et 
al. 2004 

Simultaneous and Competing risks PH 
models with Weibull duration 
distribution. Log-Gamma distributed 
unobserved heterogeneity. 

Competing risks vehicle transactions (replace a vehicle, 
dispose a vehicle, buy a new vehicle) model to analyze 
the impact of a vehicle inspection program and an 
incentive program to scrap old vehicles on vehicle 
transactions. 

Panel data of French vehicle 
ownership and transactions 
from 1984 to 1998. 

Chen and 
Niemeier 2005 

PH model with Weibull duration 
distribution. A discrete mixture with two 
mass points used to capture unobserved 
heterogeneity. 

A vehicle scrappage model with an emphasis was on 
identifying the influence of vehicle attributes in addition 
to vehicle age.  

 

A stratified sample of 
passenger car smog check data 
collected between 1998 and 
2002 by the California Bureau 
of Automotive Repair. 

Applications in Other Areas 

Nam and 
Mannering 
2000 

Tested PH models with baseline hazard 
functions corresponding to exponential, 
Weibull, log-normal, log-logistic, and 
Gompertz duration distributions. Gamma 
distributed unobserved heterogeneity. 

Analysis of the factors affecting incident detection, 
response and clearance durations. Temporal stability 
analysis of incident durations between the 1994 data and 
the 1995 data. 

Washington state Incident 
Response Team collected data 
on 1994-95 highway incidents. 
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Table 1. (Applications in Other Areas,  continued)  

Author(s) Model Structure Empirical Focus Data Source 
Fu and Wilmot 
2006 

Cox PH and non parametric hazard-based 
PH models. 

Analysis of the impact of socio-demographics, hurricane 
characteristics and evacuation order on households’ 
decisions to evacuate at each time period before hurricane 
landfall. 

Southeast Louisiana data 
following the passage of 
hurricane Andrew in August 
1992, conducted by the 
Population Data Center at 
Louisiana State University. 

Cherry 2005 Weibull duration model with no 
covariates. 

Hazard-based analysis to determine the expected amount 
of time a transit bus is in service and out of service in 
order to accurately predict the number of buses out of 
service for maintenance at a given time. 

San Francisco Municipal 
Transit Agency data on diesel 
engine and electric engine 
fleet maintenance. 
 

 

 

 


