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ABSTRACT 1 
This paper employs a recently emerging copula-based methodology to address endogeneity in 2 
crash injury severity models. Specifically, two important sources of endogeneity are addressed: 3 
(1) Endogeneity due to the correlations between the injury severities of the two drivers involved 4 

in two-vehicle crashes, and (2) Endogeneity of collision type and injury severity outcomes. To 5 
this end, two sets of copula-based joint model systems are formulated and estimated using data 6 
on two-vehicle crashes from the 2007 Generalized Estimates System: (1) A copula-based joint 7 
ordered logit-ordered logit model of injury severities of the two drivers involved in two-vehicle 8 
crashes, and (2) A copula-based joint multinomial logit-ordered logit model of collision type and 9 

injury severity outcomes of two-vehicle crashes. To our knowledge, this study constitutes one of 10 
the first applications of the copula-based methods to address endogeneity in traffic safety 11 
literature. 12 

Model estimation results from the two joint model systems show a statistically significant 13 

presence of the two types of endogeneity, ignoring which resulted in deteriorated model fit, 14 
biased parameter estimates and distorted elasticity/marginal effects. These results underscore the 15 

importance of accommodating endogeneity in crash injury severity modeling, as well as the 16 
potential of the copula-based methods in traffic crash modeling and analysis. Further, the model 17 

estimates offer useful insights on the impact of various roadway, environmental, vehicle, and 18 
driver characteristics on the injury severity of the drivers involved in two-vehicle accidents. 19 

 20 
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 32 

 33 

 34 



2 
 

1 INTRODUCTION 1 
Automobile crashes cause significant losses to the society due to fatalities, traffic congestion, 2 
medical costs, and property damage. The severity of injuries sustained by the individuals 3 
involved in these incidents depends on a multitude of factors, including roadway design features 4 

(alignment, pavement condition), environmental factors (weather, traffic conditions), vehicle 5 
characteristics (size, weight, safety features), and drivers’ characteristics (age, gender) and their 6 
driving behavior (speed, seat belt use, alcohol influence, aggressiveness). It is important to 7 
understand and quantify the influence of each of these factors on crash injury severity so that 8 
engineering/policy measures can be formulated to reduce severe crashes. To this end, 9 

transportation safety literature abounds with studies [e.g., (1) and (2)] that model the relationship 10 
between crash injury severity and the factors identified above.  11 

A major limitation of several crash injury severity studies in the literature, however, is the 12 
neglect of several sources of endogeneity bias. Even if endogeneity is recognized, the currently 13 

used methods to do so are associated with several drawbacks. Thus, this paper employs a new, 14 
copula-based methodology to address the issue of endogeneity in crash injury severity models. 15 

Specifically, two important sources of endogeneity are addressed in the context of two-vehicle 16 
crashes: (a) Endogeneity due to the correlations between the injury severities of the drivers 17 

involved in two-vehicle crashes, and (b) Endogeneity due to the common unobserved factors 18 
affecting the collision type and injury severity outcomes in two-vehicle crashes. To this end, we 19 
formulate and estimate: (a) a copula-based joint ordered logit-ordered logit (ORL-ORL) model 20 

system to jointly model the injury severity levels of the drivers involved in two-vehicle crashes, 21 
and (b) a copula-based joint multinomial logit-ordered logit (MNL-ORL) model system to jointly 22 

analyze the collision type and injury severity outcomes in two-vehicle crashes. 23 
The next section explains the different sources of endogeneity in injury severity models 24 

and reviews the relevant literature. Section 3 provides an overview of copulas and formulates the 25 

copula-based joint model systems used in the paper. Section 4 presents the empirical analysis 26 

results using data from the 2007 Generalized Estimates System (GES) database. Section 5 27 
concludes the paper. 28 

 29 

2 ENDOGENEITY IN CRASH INJURY SEVERITY MODELING 30 
Econometrically speaking, endogeneity bias occurs due to the presence of non-independent 31 

errors in the model specification (3). Such non-independent errors can occur due to several 32 
reasons, including: (a) The presence of endogenous explanatory variables where the observed 33 

explanatory variables in a model are correlated with the unobserved factors in the error terms, 34 
and (b) The presence of correlations across error terms of different model equations due to 35 
common unobserved factors influencing the outcome variables of interest.  36 

A classic case of the former type of endogeneity in crash injury severity models 37 

corresponds to the use of seat belts. The decision to wear a seat belt is typically used as an 38 
exogenous explanatory variable to explain the influence of seat belt use on crash injury severity 39 
without considering the behavioral differences between those who wear seat belts and those who 40 

do not. However, it is possible that seat belt non-users may be intrinsically unsafe drivers [(4); 41 
(5)] and their unsafe driving habits may lead to severe crashes. The impact of such behavioral 42 
differences on injury severity outcomes, when not considered, may get confounded with the 43 
impact of seat belt use on injury severity outcomes. This econometric issue arises because the 44 
seat belt use variable in the model is likely to be correlated to the error term that contains 45 
unobserved factors (such as unsafe driving habits) influencing injury severity. In other words, 46 
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common unobserved factors influence both seatbelt use and crash injury severity. Ignoring such 1 

endogeneity of an explanatory variable can lead to biased and inconsistent estimates and 2 
distorted policy implications (3). 3 

Similar to the endogeneity of seat belt-use, several other factors such as crash type (head-4 

on, angle, rear-end, etc.), driving under alcohol/drug influence, driving during night time, and 5 
vehicle occupancy may be endogenous to the severity of crashes. For example, in the context of 6 
crash type, it is very well recognized that head-on collisions are likely to result in more severe 7 
injuries than other types (angle, rear-end, and side-swipe) of collisions involving multiple 8 
vehicles. To accommodate this, collision type is typically included as an exogenous explanatory 9 

variable. However, there may be several unobserved driver characteristics or roadway features 10 
that may result in a particular type(s) of collision(s) as well as influence the severity of injuries. 11 
Due to such influence of common unobserved factors, the collision type variable(s) can 12 
potentially be endogenous to injury severity outcomes.  13 

Another important type of endogeneity occurs due to common unobserved factors 14 
affecting the injury severity of different individuals involved in a same crash. For example, if a 15 

driver involved in a two-vehicle crash sustains severe injuries, it is likely that the other driver 16 
(and other individuals) involved in that crash also sustains severe injuries. This is because 17 

several factors (such as speeding/aggressive driving and roadway design/environment-related 18 
factors) that influence the injury severity of one driver also influence the injury severity of 19 
another driver. Thus, the injury severity propensities of all the individuals involved in a crash can 20 

potentially be correlated to (or endogenous to) each other. Despite the likelihood of such 21 
endogeneity, most crash injury severity studies in the literature model the injury severity of each 22 

crash victim as independent of the injury severity of other victims from the same crash as if each 23 
individual was involved in a different crash.  24 

To be sure, the traffic safety literature is not devoid of studies that recognize and capture 25 

the forms of endogeneity discussed above. Table 1 provides an extensive coverage and summary 26 

of these studies. The first six studies in the table focus on the endogeneity of seat belt-use. 27 
Among these, while Evans (4) addressed this issue using simple descriptive analysis, Dee (6), 28 
Derrig et al. (7) and Cohen and Einav (8) used aggregate-level analyses using data on seat belt 29 

usage rates and fatality rates. Eluru and Bhat (5) recognized that such aggregate-level analyses 30 
mask the heterogeneity across individual crashes and used a disaggregate crash victim-level 31 

injury severity analysis to address the issue of seat belt endogeneity. They propose a joint 32 
random coefficients modeling approach where common random terms are employed across the 33 

seat belt use and injury severity models to capture the endogeneity due to common unobserved 34 
factors affecting seat belt use and injury severity. To do the same, de Lapparent (9) used the 35 
familiar, bivariate probit modeling approach. 36 
 Only two studies have endogenously analyzed crash type with injury severity. Of these 37 

two studies, while Kim et al. (10) include crash type as an endogenous variable in a structural 38 
equations framework, Ye et al. (11) explicitly recognize the endogeneity of two-vehicle collision 39 
type variables using a joint, random coefficients multinomial logit – ordered logit model of 40 

collision type and injury severity. Their results indicate a significant presence of unobserved 41 
factors affecting crash type and injury severity, ignoring which may result in inconsistent and 42 
biased coefficient estimates in the injury severity model.  43 

Lee and Abdel-Aty (12) used bivariate probit models to address the endogeneity of 44 
vehicle occupancy and passenger characteristics in crash outcome (injury severity, type, etc.) 45 
models. Such endogeneity of explanatory variables has been found to be an important issue not 46 
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only in crash injury severity models, but also in crash frequency models. For example, Kim and 1 

Washington (13) identified that ignoring the endogeneity of left-turn lane variables may lead to a 2 
counterintuitive result that left-turn lanes cause an increased occurrence of angle accidents. 3 
 The next set of studies [(14) - (17)] addresses the endogeneity due to the simultaneity of 4 

the injury severity outcomes of the different individuals involved in a same crash. These studies 5 
use bivariate ordered (or binary) response modeling methods to jointly model the injury 6 
severities of the two individuals under consideration. The next set of studies [(18) - (21)], are 7 
further advanced in that they recognize the presence of a multilevel hierarchy (such as vehicle-8 
level, crash-level, and location-level) in traffic crash data. These studies provide evidence of 9 

significant magnitude of common unobserved factors at each level of the hierarchy. Thus, for 10 
example, the unobserved factors at the crash-level cause correlations among the injury severity 11 
model equations of all individuals involved in the crash. 12 

Each of the methods used in the above-discussed studies is associated with specific 13 

drawbacks. For example, the joint random coefficients modeling approach necessitates the use of 14 
simulation-based estimation, which is computationally intensive and saddled with such technical 15 

issues as bias and unidentifiability of model parameters. The bivariate probit method is not easily 16 
adaptable to accommodate the endogeneity of polychotomous categorical variables (such as 17 

collision type). Another disadvantage is that the bivariate normal distribution used for most 18 
bivariate modeling methods is restrictive in the types of correlations (or dependencies) it can 19 
accommodate between the variables of interest (more in Section 3). Further, to extend this 20 

approach to model multivariate outcomes, one has to resort to computationally intensive 21 
simulation-based estimation. The multi-level modeling method, as identified by Lengeurrand et 22 

al. (19) is better applicable “when the number of vehicles per crash and the number of occupants 23 
per vehicle is high”. Their simulation experiments indicated that when the number of data points 24 
in a cluster (or level) is small; such models may be difficult to estimate. In the context of crash 25 

injury severity modeling, since a large proportion of crashes do not involve more than two 26 

individuals per vehicle and more than two vehicles per crash, an alternative approach may be 27 
preferred. Further, even if estimable, multi-level models require the use of computationally 28 
intensive simulation-based estimation methods. 29 

In view of the disadvantages of the currently used methods, this paper uses a recently 30 
emerging copula-based approach to address endogeneity in crash injury severity models for 31 

drivers involved in two-vehicle crashes. Specifically, two important sources of endogeneity are 32 
addressed in this paper: (a) Endogeneity due to common unobserved factors influencing the 33 

injury severity of the two drivers involved in a crash, and (b) Endogeneity of collision type 34 
outcomes to injury severity outcomes. The copula-based approach, as discussed next, offers 35 
several advantages over other methods used in the literature. 36 
 37 

3 COPULA-BASED METHODOLOGY 38 
Copulas are mathematical constructs used to generate dependency (or correlations) among 39 
stochastic variables with known marginal distributions [(22); (23)]. Specifically, a copula is a 40 

multivariate distribution function defined to link (or tie) several uniformly distributed marginal 41 
variables. Following Bhat and Eluru (23), if U1, U2,…,UN are N uniformly distributed random 42 
variables, then the N-dimensional copula or the N-dimensional joint distribution of these random 43 
variables can be defined as: 44 

Cθ (u1, u2, …, uN) = Pr(U1 < u1, U2 < u2, …, UN < uN),                         (1) 45 
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where   is a parameter vector referred to as the dependence parameter vector analogous to (but 1 

not the same as) the correlation vector in a multivariate normal distribution. Such a copula 2 

function can be applied to pre-specified marginal distributions to generate dependency (or 3 
correlations) among those marginal distributions. To see this, again following Bhat and Eluru 4 
(23), consider N univariate random variables X1, X2,…,XN, each with continuous marginal 5 
distribution functions Fn(yn) = Pr(Yn < yn), n =1,2,…,N. Using the integral transform result, the 6 
marginal distribution of each random variable Xn can be expressed as:  7 

1
( ) P r( ) P r( ( ) ) P r( ( )).

n n n n n n n n n n
F x X x F U x U F x


                       (2) 8 

Then, by Sklar’s (24) theorem, a joint N-dimensional distribution function of the random 9 
variables with the marginal distribution functions Fn(xn) can be generated as: 10 

F(x1, x2, …, xn) = Pr(X1 < x1, X2 < x2, …, Xn < xn)  11 

                   = Pr(U1 < F1(x1),, U2 < F2(x2), …,Un < Fn(xn))                   (3) 12 

which is nothing but a copula function (as in Equation 1) as below: 13 

F(x1, x2, …, xn) = Cθ (u1 = F1(x1), u2 = F2(x2),…, un = Fn(xN)).                   (4) 14 

There are several advantages to using copulas. First, copulas can capture more general forms of 15 
dependency (such as asymmetric dependence, and asymptotic dependence) than the simple, 16 
symmetric and asymptotically independent forms of dependency exhibited in bivariate normal 17 

distributions of the bivariate probit models. Second, the dependency form is independent of the 18 
marginal distributions of the stochastic variables. Thus the stochastic variables of interest (for 19 

example, injury severity propensity and collision type propensity) need not necessarily follow 20 
the same marginal distribution. Third, a variety of copula functions can be used to explore 21 

different forms of dependency as opposed to the usual bivariate normal distributions used in 22 
earlier studies. Fourth, several copulas offer closed-form probability expressions and obviate the 23 

need for computationally intensive simulation-based model estimation.   24 
In the context of crash injury severity modeling, copulas can be used to join the injury 25 

severity models of different individuals involved in an accident into a simultaneous equations 26 

framework. Further, copulas can also be applied to incorporate endogeneity of collision type (or 27 
other) variables. In this section, we first formulate the familiar ordered logit model of injury 28 

severity, then develop two copula-based joint model systems: (a) A copula-based joint ordered 29 
logit-ordered logit (ORL-ORL) structure to jointly model the injury severity levels of two drivers 30 

involved in a two-vehicle crash, and (b) A copula-based multinomial logit-ordered logit (MNL-31 
ORL) structure to jointly model collision type and driver injury severity. 32 

 33 

3.1 Independent Injury Severity Model 34 

Let 
d j

q be an index to represent the two drivers d (d = 1,2) involved in a two-vehicle 35 

collision/accident q (q = 1,2,…,Q) of type j ( 1, 2 , ... )j J and let kdj (kdj = 1,2,3,…,K) be an 36 

index to represent injury severity of the drivers. In the current paper, j takes the values of  37 

“head-on” (j =1), “angle” (j =2), “rear-end” (j =3), “sideswipe” (j =4) and “other” (j =5), where 38 
the index kdj, takes the values of “no injury” (kdj = 1), “possible injury” (kdj = 2), “non-39 
incapacitating injury” (kdj = 3), “incapacitating injury” (kdj = 4), and “fatal injury” (kdj = 5). Let 40 

d j
q

y denote the observed injury severity sustained by the drivers involved in a two-vehicle 41 
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collision, let *

d j
q

y denote the latent (unobserved) injury severity propensity of those drivers, and 1 

let 
d j

k
 be the thresholds used to map the observed injury severity levels to the latent injury 2 

severity propensities. Using this notation, define *

d j
q

y as below:  3 

* '

d jd j d j
qq j q

y x                                   (5) 4 

where '
j

  is a vector of coefficients of the observed roadway, environmental, vehicle, and driver 5 

characteristics 
d j

q
x affecting the driver’s injury severity if (s)he was involved in an accident of 6 

type j, and 
d j

q
 is a random component that captures the unobserved factors affecting the injury 7 

severity. The latent injury severity propensity *

d j
q

y of each driver d is mapped to his/her injury 8 

severity level 
d j

q
y by the 

d j
k

  thresholds as below: 9 

*

1

1

1

if ,

if ,

if ( ) ( )

d j d j d j d j

d j d j d j d jd j

d j d j d j d jd j d j

q d j k q k

q d j k j q q k

q d j k j q q k j q

y k y o r

y k x o r

y k x x

 

   

    







  

   

     

                           (6) 10 

Given the above mapping, assuming that the 
d j

q
 terms are Gumbel distributed, the probability of 11 

a driver d involved in a two-vehicle accident q of type j sustaining an injury severity of level 
d j

k  12 

(
d j

q d j
y k ) is given by the familiar ordered logit formula: 13 

1
( ) ( ) ( )

d j d d j d j d d j d j
q d j j k j q j k j q

P y k F x F x
 

   


                                (7) 14 

where, ( .)
d

j
F


is the cumulative distribution function of the error term 
d j

q
 . This probability 15 

expression represents an independent injury severity model (for each driver and accident type j) 16 

that does not capture any form of endogeneity.  17 
 18 

3.2 Joint Injury Severity Model for the Two Drivers Involved in Two-Vehicle Crashes 19 

The equation system for simultaneously modeling the injury severity of two drivers 
1 j

q and 20 

2 j
q involved in a two-vehicle accident q of type j can be written as: 21 

1 1 1 1 1 1

2 2 2 2 2 2

1 1

2 1

if ( ) ( )

if ( ) ( )

j j j j j j

j j j j j j

q j k j q q k j q

q j k j q q k j q

y k x x

y k x x

    

    





     

     

                (8) 22 

From the above equation system, the joint probability that one driver sustains injuries of severity 23 

level 
1 j

k  and another driver sustains injuries of severity of level 
2 j

k  is: 24 
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 

1 2

1 1 1 1 2 2 2 2 21

1 1 1 2 2 2

1 1 1 2 2 2

1 1

1 2

11

1

( , )

( ) ( ) , ( ) ( )

( ) , ( )

( ) , ( )

(

[ ] [ ]

[ ]

[ ]

[

j j

j j j j j j j j jj

j j j j j j

j j j j j j

j j

q j q j

j q q k j q k j q q k j q

q k j q q k j q

q k j q q k j q

q k

k

P y k y k

P x x x x

P x x

P x x

P

         

     

     

 





  

          

     

     

 
1 2 2 2

1 1 1 2 2 2

1

1 1

) , ( )

( ) , ( )

]

[ ]

j j j j

j j j j j j

j q q k j q

q k j q q k j q

x x

P x x

   

     



 

   

     

        

(9) 1 

The form of the above probability expression depends on the specification of the dependency 2 

form between the random terms 
1 j

q
 and 

2 j
q

 . Specifically, one may use copula functions to write 3 

the joint probability expression as: 4 

1 2 1 2 1 2 1 2 1 2
1 2 1 1 1 1

( , ) ( , ) ( , ) ( , ) ( , )
j j

j j j j j j j j

q j q j q k q k q k q k q k q k q k q k
P y k y k C u u C u u C u u C u u

      
     

      
(10) 5 

where, (. ,  .)C


is a copula function defining the dependency form between 
1 j

q
 and 

2 j
q

 , and 6 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1

1 1

( ) , ( ) ,

( ) , ( ) .

j j j j

j j j j

j j

q k j k j q q k j k j q

j j

q k j k j q q k j k j q

u F x u F x

u F x u F x

 

 

   

   

 

 

    

      
7 

Using the joint probability expression of Equation (10) for the injury severity of the two 8 

drivers involved in a two-vehicle accident q, the likelihood function of injury severity outcomes 9 
for all the Q two-vehicle accidents is: 10 

1 2

1 2

1 2

1 2

1 , 1

( , )

q

q k q kj j

j j

j j

w
Q K

q j q j

q k k

L P y k y k
 

 

  
     

  

           (11)
 

11 

where 
1 jq k

 and 
2 jq k

  are dummy variables taking the value 1 if driver 1 and driver 2 involved in 12 

accident q of type j sustain injuries of levels 
1 j

k   and 
2 j

k , respectively, and 0 otherwise. wq is the 13 

weight for accident q used to represent an unbiased sample of two-vehicle crashes. The 14 

logarithm of the above likelihood function is maximized (i.e., the maximum likelihood approach 15 

is adopted) to estimate all parameters of the models, including the vector of coefficients  , the 16 

thresholds, and the dependency parameter . Maxlik module of the GAUSS matrix programming 17 
language was used to code the likelihood function and estimate the parameters.

 
18 

 
19 

3.3 Joint Model of Collision Type and Injury Severity 20 
In the joint model of collision type and injury severity, the injury severity model component 21 

takes the ordered logit specification as in Equations (6) and (7) and the collision type model 22 
component takes the familiar discrete choice formulation. Consider the following equation that 23 

represents the propensity of an accident type j : 24 

*
q j j q j q j

u z        (12) 25 
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In the equation above, *
q j

u  is the propensity that q
th

 accident is of type ( 1, 2 , ... )j j J , 
q k

z  is a 1 

column vector of roadway design and environment, vehicle, and other attributes (including a 2 

constant) affecting the propensity, 
j

   is the corresponding coefficient vector, and 
q j

  is the 3 

error term capturing the effects of unobserved factors on the propensity associated with accident 4 

type j . With this propensity specification, the accident type outcome of an accident q  is 5 

assumed to be of type j  if it is associated with the maximum propensity among all J  accident 6 

types; that is, if 7 

1 , 2 , .... ,

* *
m ax

l J l J

q j q l
u u

 

  (13) 8 

Next, following Lee (25) and Spissu et al. (26), the above polychotomous outcome model is 9 
recast into of a series of binary outcome model formulations, one for each collision type. To do 10 

so, let 
q j

R  be a binary variable that takes a value of 1 if accident q  is of type j and 0 otherwise. 11 

Subsequently, substituting 
j q j q j

z    for *
q j

u  (from Equation 12), rewrite Equation (13) as: 12 

1 , ( 1, 2 , .. . . )i f j J
q j j q j q j

R z v        (14) 13 

*

1 ,2 ,.... ,

w here , { m ax }
q j q l q j

l J l j

u 
 

       (15) 14 

Equation (14) represents a series of binary outcome model formulations one for each collision 15 

type j , which is equivalent to the multinomial discrete choice model of collision type. An 16 

assumption that the 
q j

  terms are assumed to be independent (across j) and identical Gumbel 17 

distributed results in logistic distribution for the 
q j

  terms, and consequently, the collision type 18 

probability expressions resemble the multinomial logit probabilities. 19 

 Now, the joint probability that an individual gets involved in a collision of type j, and 20 
sustains injuries of severity level kdj   is given by: 21 

    

   

1

1

( 1, ) , ( ) ( )

( ) , ( ) ( ) , ( )

d j d j d j d j d j d j

d j d j d j d j d j d j

q j q d j j q j q j k j q q k j q

j q j q j q k j q j q j q j q k j q

P R y k P z v x x

P z v x P z v x

     

       





         

          

             (16) 22 

The above joint probability expression depends upon the dependence structure between the 23 

random variables 
q j

  and
d j

q
 . As indicated earlier, in this paper, copula-based methods are used 24 

to capture these dependences. To do so, first the marginal distributions of  
q j

  and 
d j

q
 , ( .)

j
F


and 25 

( .)
d

j
F


, are transformed into uniform distributions using their inverse cumulative distribution 26 

functions. Subsequently, copula functions are applied to “couple” the marginal inverse 27 

cumulative distribution functions into a joint distribution
,

( ., .)
d

j j
F
 

. Thus, for a driver involved 28 

in an accident q, the joint probability that the collision type outcome is j and the injury severity 29 
outcome is kdj can be expressed using copula functions as below: 30 

1
( 1, ) ( , ) ( , )

d j d d

j j j j

q j q d j q k q q k q
P R y k C u u C u u

  
    
                       (17) 

31 
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where  . , .
j

C


 is the copula corresponding to 
,

( ),
d d

j j

vj j qq k
F u u


 and 

1,
( ),

d d

j j

v j j qq k
F u u

 
, with 1 

1 1
( ) , ( )

d d d j d j d d d j d j

j j

q k j k j q q k j k j q
u F x u F x

 
   

 
     and  ( )

j

q j j q j
u F z


  . This copula function 2 

captures the dependency between 
*

1 ,2 ,.... ,

( { m ax } )
q j q l q j

l J l j

v u 
 

   and 
d j

q
 terms. 

 
3 

Using the joint probability expression of Equation (17) for the collision type and injury 4 
severity outcomes, the likelihood function for all the Q two-vehicle accidents is: 5 

 
1 1 1

( 1, )

q

q j q k d j

d j

d j

w
Q J K R

q j q d j

q j k

L P R y k


  

 

   

  

                                   (18)
 

6 

where  
d jq k

  takes the value 1 if driver d involved in accident q sustain injury of level 
d j

k   and 0 7 

otherwise (
jq

R
 
and wq re as defined earlier). The logarithm of the above likelihood function is 8 

used in a maximum likelihood estimation routine (coded in GAUSS) to estimate the model 9 
parameters
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4 EMPIRICAL ANALYSIS 12 

4.1 Data 13 
The data used in this study was obtained from the 2007 Generalized Estimates System (GES) 14 
data made available by the National Highway Traffic Safety Administration. The 2007 GES 15 

includes information regarding 61,282 crashes (of which 35.7% were single vehicle crashes, and 16 
55.9% were two-vehicle crashes) involving about 152,727 individuals and 107,202 vehicles.17 

 From the GES data pool, information pertaining to two-vehicle crashes (consisting of 18 

57,550 drivers involved in 28,775 two-vehicle crashes) was extracted. Further, crashes involving 19 

commercial vehicles or large trucks were discarded and the remaining data with missing 20 
information was removed. Subsequently, 5027 crash records (with 10054 driver records) were 21 
randomly sampled for model estimation and empirical analysis. Accident level weights were 22 

developed such that the weighted distribution of injury severity in this sample was the same as 23 
that in the full sample of two-vehicle drivers. 24 

 Among the 10054 driver records in the sample, close to 69.9% of the drivers experienced 25 
no injury, 14.3% driver records indicate possible injury, 9.1% indicate non-incapacitating injury, 26 
6.1% indicate incapacitating injury, and 0.6% indicate fatal injury. Among the 5027 two-vehicle 27 

crashes, 6.2% are head-on collisions, 46.4% are angle collisions, 38.5% are rear-end collisions, 28 
7.6% are sideswipe crashes, and 1.2% are other types of crashes. Further details and descriptive 29 
analyses (available from the authors) are being suppressed due to space considerations. 30 

 31 

4.2 Joint Injury Severity Model for the Two Drivers Involved in Two-Vehicle Crashes  32 
This section presents the results of the bivariate copula-based joint ORL-ORL model (of the 33 
injury severity of the two drives involved two-vehicle crashes) as well as a simple independent 34 
ORL model (that does not consider correlations between the injury severities of the two drivers). 35 
Table 2 presents the parameter estimates (and the corresponding t-statistics in parenthesis) from 36 

both the models (see second and third columns). Further, the marginal effects of each variable 37 
(computed using both the models) are also provided for the fatal injury category (see fourth and 38 
fifth columns). 39 
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Various driver, roadway, vehicle, and environmental attributes were explored in the 1 

model specification. The first set of variables in table corresponds to driver characteristics. 2 
Among these, the female dummy variable coefficients and marginal effects indicate that females 3 
are more susceptible to higher injury severities than males. Age-related variable effects indicate 4 

that drivers of age less than 65 years are less prone toward higher severity injuries than those of 5 
65 years or older age. Alcohol/drug influence variable effects indicate that drivers under the 6 
influence of alcohol or drugs are likely to experience higher injury severities than those who do 7 
not drive under the influence of alcohol or drugs. Further, the coefficients and the marginal 8 
effects of the alcohol/drug use by the driver of the partner vehicle indicates that in two-vehicle 9 

accidents, even if a driver is not under the influence of alcohol or drugs, he/she is likely to 10 
experience higher injury severities if the other driver is involved in alcohol or drugs. This result 11 
indicates that those who drive under the influence of alcohol or drugs pose a risk of higher injury 12 
severity (and fatality) not only to themselves but also to other individuals involved in the 13 

accident. Although a very intuitive finding, not many previous studies have documented this 14 
result. Finally, among the driver characteristics, the seat belt effects indicate that use of safety 15 

belts helps in protecting the occupants from severe injuries. 16 
 Among the roadway characteristics, roadway surface condition related effects indicate 17 

that accidents occurring during snow or ice on the road tend to be less severe than those 18 
occurring during dry or wet conditions. This may be because drivers may exercise higher caution 19 
during such roadway conditions than normal (dry/wet) conditions. Similarly, drivers appear to be 20 

more cautious on steeper roads than on level roads. The next, speed limit variable effects indicate 21 
that driver injury tends to be most severe for crashes on medium speed limit (26-65mph) and 22 

high speed limit (>65mph) roads, when compared to low speed limit roads. Since vehicle speeds 23 
are higher on medium speed limit roads and high speed limit roads, the injury severity on such 24 
roads is higher than that on low speed limit roads. Since speed limit variables can be viewed as 25 

surrogates for (and are highly correlated with) road type classification (freeways, arterials, local 26 

streets, etc), we did not include road type classification variables in the model. 27 
 Crashes occurring in dark conditions tend to be more severe than those occurring during 28 
daylight. Land-use variable effects indicate that crashes occurring in areas of larger population 29 

(>100,000) tend to be more severe. The reason behind this result is not clear as one would expect 30 
areas with larger population to be associated with lower traffic speeds (due to high traffic 31 

volumes and congestion) and hence lower injury severity. The manner of collision variable 32 
effects indicate that head-on and angle collisions lead to more severe injuries, and  side swipe 33 

collisions lead to less severe injuries than rear-end and other types of collisions (see Ye et al. 34 
(11)  for a similar finding). The marginal effects indicate that head-on collisions show the largest 35 
propensity to cause fatalities. Vehicle role variable effects suggest a higher injury severity level 36 
if the vehicle is struck, or is struck and strikes another vehicle, relative to striking another 37 

vehicle. 38 
Among the body type variables, as expected, drivers in pickup trucks and utility vehicles 39 

involved in two-vehicle accidents appear to be less prone to higher injuries than those in sedans. 40 

Further, if the partner (or other) vehicle involved in the accident is a non-sedan (i.e., a pickup 41 
truck, or a utility vehicle), the driver injury severity tends to be higher (Kockelman and Kweon 42 
(27) report a similar result). Drivers of older vehicles (older than 10 years) indicate higher injury 43 
severity propensity than those of new vehicles, perhaps due to the improved safety features in 44 
new vehicles.  45 
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The next set of parameters corresponds to the thresholds, all of which, as expected, are in 1 

ascending order according to the levels of injury severity they correspond to.  2 

The next, copula dependency parameter   (for the copula-based joint model) represents 3 
the level of association (or correlation) between the injury severity propensities of the two 4 
drivers in two-vehicle accidents. In this model, we explored different types of copula functions 5 
(including Gaussian, Frank, Gumbel, Joe, and Clayton copula functions) to model the association 6 
between the two injury severity propensities. The Gumbel copula provided the best model fit. 7 

According to the properties of the Gumbel copula,   value greater than 1 indicates a non-zero 8 

correlation. The reported t-statistic of the parameter (against a null value of 1) shows that the   9 

parameter value of 1.31 is statistically different from 1, indicating significant positive 10 
correlations between the injury severities of the two drivers involved in a same accident (see 11 
Hutchinson (14); and Ouyang et al. (16) for a similar result).  12 

The positive correlation indicates that the unobserved factors that increase the injury 13 

severity of one driver involved in a two-vehicle accident also increase the injury severity of the 14 
other driver involved in that accident. Such correlations may arise because of the presence of 15 

several common (to the injury severity propensity equations of the two drivers) unobserved, but 16 
influential, factors that affect the injury severity of both the drivers involved in two-vehicle 17 
accidents. Such factors include, for example, vehicle speeds, aggressive/risky driving behavior 18 

habits (such as over speeding), and other roadway related features (such as presence or absence 19 
of guard rails, traffic conditions, etc.) that are not usually well-recorded in crash reports.  20 

The log-likelihood ratio statistic between the independent and the copula-based joint 21 
models is -2*(-4747 – -4923) = 352, which is much higher than that the critical chi-square value 22 
for a degree of freedom of 1 (for one additional copula parameter in the joint model) at any level 23 

of significance. This indicates the superior statistical fit of the joint model than the independent 24 
model and that driver injury severity should be modeled in a joint fashion for two-vehicle 25 

crashes. The independent injury severity model treats the two drivers involved in a two-vehicle 26 
accident as if from two separate accidents. Such assumption may result in distorted estimates of 27 

the influence of various roadway, environmental, vehicle, and driver characteristics on injury 28 
severity. This can be observed by comparing the model estimates of the independent and copula-29 

based joint models in Table 2. Further, the differences in the marginal effects obtained from the 30 
two models are non-negligible for certain variables. Specifically, the joint model shows smaller 31 
marginal effects than the independent model. For example, the magnitude of the marginal effect 32 

of seat belt use variable from the joint model is considerably lower than that from the 33 
independent model. This may be because safety belt non-users may be intrinsically unsafe 34 

drivers (5), because of which both the drivers in a two-vehicle accident are likely to experience 35 
injuries of high severity (especially fatal injuries). The joint model captures such common 36 
unobserved factors that affect the injury severity of both the drivers in the copula dependency 37 

parameter, and isolates the seat belt effect from any such confounding effects. Thus, the model 38 
indirectly controls for the endogeneity of the seat belt variable. On the other hand, the 39 
independent model simply ignores such unobserved factors that get confounded into the effect of 40 
seat belt use and lead to spuriously inflated estimates of the influence of seat belt use. Similar 41 

inferences can be made in the context of the differences in marginal effects of the head-on 42 
collision variable and the vehicle role (i.e., “struck by and strikes other vehicle”) variable. Thus, 43 
an advantage of jointly modeling the injury severities of the different individuals involved in a 44 
same crash is that different sources of endogeneity can be controlled for.  45 

 46 
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4.3 Results of the Joint Model of Collision Type and Injury Severity 1 
The discussion in the preceding section corresponds to the endogeneity due to the correlations 2 
between the unobserved factors affecting the injury severities of different drivers. This section, 3 
presents the results of the copula-based joint MNL-ORL model of collision type and injury 4 

severity of drivers involved in two-vehicle collisions that accounts for the endogeneity of 5 
collision type. Table 3 presents the parameter estimates of the model. Due to space 6 
considerations, we briefly discuss the model estimates and focus on salient aspects. 7 
 The estimates of the collision type model component are in the left half of Table 3. These 8 
estimates indicate the influence of various roadway, crash and driver characteristics on the 9 

collision type outcome of a two-vehicle crash (given the occurrence of a two-vehicle crash). For 10 
example, a two-vehicle crash is likely to be a head-on collision when people drive under the 11 
influence of alcohol/drugs, in snow/ice road conditions, on road segments that are either curved 12 
or have no median, and during dark conditions. Similarly, a two-vehicle crash is likely to be an 13 

angle collision when it occurs on straight road segments (as opposed to curved segments), roads 14 
with no median, roads with multiple lanes, during dark conditions, in areas with large 15 

populations (>100,000), at intersections, and at roadway sections with stop signs and yield signs. 16 
Further, two-vehicle crashes that occur on snow/ice road conditions, steep road segments, at 17 

intersections, and at roadway sections with yield signs and traffic signals are likely to be rear-end 18 
collisions. Whereas the two-vehicle crashes that occur during snow/ice conditions, on roads with 19 
multiple lanes, during dark conditions, and in areas with large populations (>100,000) are likely 20 

to be sideswipes. 21 
 The estimates of the injury severity component are in the right half of the table. As can be 22 

observed, two copula dependency parameters (
j

 ) were estimated, one each for head-on and 23 

angle crashes (The dependency parameters for rear-end, sideswipe and other types of crashes 24 

were not statistically significant). For both these types of crashes, the copula functions 25 

corresponding to Frank copulas provided the best model fit. For Frank copula functions, a 26 
dependency parameter significantly different from zero indicates a significant dependency (or 27 
correlation) between the marginal variables of interest [see Bhat and Eluru, (23)]. In this context, 28 

the implication is that there is significant positive correlation between the 29 
*

1 ,2 ,.... ,

( { m ax } )
q j q l q j

l J l j

v u 
 

   and 
d j

q
 terms for head-on and angle collisions (see Section 3.3). This 30 

implies that the implied correlation between collision type propensity error term (
j

 ) and injury 31 

severity propensity error term ( 
d j

q
 ) is negative and statistically significant. In the context of 32 

interpreting this result, it is important to note that the negative sign of the correlation term does 33 
not necessarily imply that injury severity in head-on/angle collisions is likely to be lower. Rather, 34 
the negative correlation indicates that the unobserved factors that contribute to the likelihood of 35 

head-on and angle collisions (within two-vehicle crashes) are negatively correlated with the 36 
unobserved factors that contribute to higher injury severity [see Ye et al. (11) for a similar result 37 
on the sign of correlations]. Further investigation is warranted to understand the unobserved 38 
factors that lead to such negative correlations. Notwithstanding the sign of the correlation terms, 39 
the statistically significant correlation parameter highlights the endogeneity of collision type 40 

outcomes with injury severity outcomes. Ignoring such endogeneity may lead to poor model fit 41 
and biased estimates of variable coefficients. In the current empirical context, the log-likelihood 42 
value deteriorated from -15439 (for the joint MNL-ORL model) to -15459 when the collision 43 
type was not considered endogenous to the model system. This log-likelihood difference is 44 



13 
 

equivalent to a log-likelihood ratio of 40, which is greater than that the 95% critical chi-square 1 

value for 2 degrees of freedom (for the two copula parameters) indicating the statistical 2 
superiority of the joint model system. 3 
 As can be observed from the table, several of the injury severity model estimates (both 4 

thresholds and coefficients) are different across different collision types. This allows the analyst 5 
to examine the differential impact of various factors on injury severity by collision type. For 6 
example, the threshold values for the head-on collisions are all smaller than the thresholds for 7 
other types of collisions. This implies an intuitive result that the probability of higher injury 8 
severity categories (fatality etc.) tends to be higher for head-on collisions than all other types of 9 

collisions. Further, the snow/ice condition variable has been found to be insignificant for head-on 10 
collisions. This implies that the severity of injuries resulting from head-on collisions do not 11 
differ by surface conditions, perhaps because of the fact that head-on collisions tend to result in 12 
severe accidents anyway due to the high relative speed and impact of the crash. Similar effects 13 

can be found in the context of age of vehicle variable that the severity of injuries resulting from 14 
head-on collisions does not differ by the age of vehicle. Almost all studies in the literature ignore 15 

such differential effects and assume that all factors have the same impact on injury severity 16 
irrespective of the type of collision.  17 

 Table 4 presents the marginal effects (for the fatal injury category) from the joint model 18 
(that considers the endogeneity of collision type) as well as an independent model system (that 19 
does not consider the endogeneity of collision type). Several important observations can be made 20 

from this table. First, the marginal effects of both the models (independent and joint) show 21 
differential impacts of several variables by collision type. This result reiterates the need to 22 

examine the differential impact of various factors by collision type. Second, for both model 23 
systems, the marginal effects of several variables (gender, age, alcohol/drug use, seat belt use, 24 
and environmental and crash characteristics) are smaller in magnitude for head-on collisions than 25 

all other types of collisions. This result points to the possibility that the injury severity resulting 26 

from head-on collisions tends to be less moderated by various factors. This is especially the case 27 
with seat belt use; seat belts are less protective in head-on collisions than in other types of 28 
collisions. Since protective measures are less effective in the event of a head-on collision, it is 29 

important to reduce the likelihood of a head-on collision in the first place by using control 30 
measures such as installation of median barriers. Third, there are non-negligible differences in 31 

the marginal effects between the independent and joint models for certain variables. For 32 
example, in the context of the medium speed limit variable, the independent model system shows 33 

rather small magnitudes of marginal effect when compared to that in the joint model system. On 34 
the other hand, the seat belt use variable shows higher marginal effects in the independent model 35 
system when compared to that in the joint model system.  36 

 37 

5 CONCLUSIONS 38 
This paper employs a recently emerging copula-based methodology to address endogeneity in 39 
crash injury severity models. Specifically, two important sources of endogeneity are addressed in 40 

the context of two-vehicle collisions: (1) Endogeneity due to the correlations between the injury 41 
severities of the two drivers involved in a two-vehicle crash, and (2) Endogeneity of collision 42 
type due to the common unobserved factors affecting the collision type and injury severity 43 
outcomes. To this end, two sets of joint model systems are formulated and estimated using data 44 
on two-vehicle crashes from the Generalized Estimates System (GES) for the year 2007: (1) A 45 
copula-based joint ordered logit-ordered logit model of injury severity of the two drivers 46 



14 
 

involved in two-vehicle crashes, and (2) A copula-based joint multinomial logit-ordered logit 1 

model of collision type and injury severity outcomes of two-vehicle crashes. To our knowledge, 2 
this study constitutes one of the first applications of the copula-based methods to address 3 
endogeneity in traffic safety literature. 4 

Model estimation results using the two joint model systems show a statistically 5 
significant presence of the two types of endogeneity. Both the model systems provide intuitive 6 
results on the impact of various roadway, environmental, vehicle, and driver characteristics on 7 
the injury severity of the drivers involved in two-vehicle accidents. Further, the joint model 8 
systems perform better than the independent counter parts that do not accommodate the 9 

corresponding endogeneity in terms of model fit and policy implications. These results 10 
underscore the importance of accommodating endogeneity in crash injury severity modeling, as 11 
well as the potential of the copula-based methods in traffic crash modeling and analysis. 12 

Several important findings have surfaced from this analysis. First, drivers under the 13 

influence of alcohol/drugs pose a risk of high(fatal) injury not only to themselves but also to 14 
other individuals involved in the accident. Such drivers are also found more likely to be involved 15 

in head-on collisions. Thus, strict enforcement policies need to be implemented in the context of 16 
reducing driving under alcohol/drug influence. Second, the injury severity resulting from head-17 

on collisions tends to be less moderated by other factors (such as seat belt use) than the injuries 18 
from other collisions. This result underscores the importance of control measures that reduce the 19 
likelihood of head-on collisions.  20 

Given these results and the copula-based method presented in the paper, it is hoped that 21 
the issue of endogeneity will be considered with much more importance than earlier in traffic 22 

crash analyses. An avenue for future research is to address the extent of (and the importance of) 23 
different sources of endogeneity in crash injury severity models. Another research avenue is to 24 
investigate the variation in the extent of endogeneity (e.g., the extent of correlations between the 25 

injury severity propensities of the two drives involved in a crash) among different crashes. 26 
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Table 1. A Summary of Traffic Safety Literature Addressing Endogeneity 

 

 

 

 

 

 

No. Paper Data Used Model Structure Used Type  of Endogeneity Research Method and Findings 

1 Evans (4) 
National Accident Sampling 

(NASS) data (1982-91) 
Descriptive analysis 

Endogeneity of seat belt 

use 

Explored the relationship between the effectiveness of seat belt and crash severity (measured by 
the change of velocity from before to after crash, inferred from the extent of vehicle damage). 

Results: Drivers who do not wear seat belts are more likely to be involved in severe crashes, and 

without considering this effect seat belt effectiveness can be overestimated. 

2 Dee (6) 
Seat belt use data from NHTSA 
and Center for Disease Control 

and Prevention (1985-93) 

Linear probability models 
Endogeneity of seat belt 

use 

Panel data models were used to understand the influence of seat belt laws on fatality rates.  

Results: Unsafe (or accident prone) drivers are less responsiveness to seat belt laws (i.e., they 

tend to continue to not wear seatbelts even after the enactment of seat belt laws), which causes 
an attenuation in the benefits of seat belt laws. 

3 Derrig et al.(7) 

Fatality rates and seat belt usage 

data from Fatality Analysis 

Reporting System (FARS)  
(1991-96) 

Multivariate regression analysis 

for per-capita fatality rates per 

vehicle miles traveled 

Endogeneity of seat belt 

use and state insurance 

system 

Panel data models were used. Instrumental variables were used for the risk-taking incentive of 

the insurance system by state. Results: Increase in seat belt usage rates in the general population 

may not lead to reductions in fatality rates, as long as accident prone drivers maintain risky 
behavior. 

4 
Cohen and Einav 
(8) 

Aggregated data from FARS 
(1983-97) 

Log-linear regression model for 

per-capita fatality rates in each 

state in the U.S. 

Endogeneity of seat belt 
use 

Presence of mandatory seat-belt laws (by state) was used as an instrument variable to control for 

the endogeneity of seat-belt usage. Ignoring the endogeneity of seat belt-usage rates resulted in a 

biased assessment of the effect of seat belt-usage rates on the predicted fatality rates. 

5 Eluru and Bhat (5 ) 
Generalized Estimates System 
(GES) data (2003) 

Joint random coefficients 

binary logit - ordered logit 

model 

Endogeneity of seat belt 
use 

Jointly modeled seat belt usage and injury severity. Results indicate the presence of unobserved 

factors influencing both seat belt use and injury severity. The influence of seat belt use on injury 

severity was overestimated if the endogeneity of seat belt usage was not considered. 

6 de Lapparent (9) 
French road accident reports 

(2003) 

Bivariate ordered probit model 

of seat belt use and injury 
severity 

Endogeneity of seat belt 

use 

Jointly modeled seat belt use and injury severity, separately for the drivers, front passengers and 

rear passengers. Results suggest that while seat belt-use is effective in moderating injury 
severity, drivers may compensate for some of this safety benefit by taking more risks. 

7 Ye et al. (11) GES data (2005) 

Joint random coefficients 

multinomial logit - ordered 

logit model of collision type 

and injury severity 

Endogeneity of collision 

type variables in two-
vehicle crashes 

Jointly modeled collision type and injury severity of two-vehicle crash victims. Results suggest 

that the unobserved factors contributing to head-on collisions are  negatively associated with 

those contributing to severe injuries, where as the unobserved factors  contributing to rear  end  

crashes are positively  correlated with those contributing to severe injuries  

8 Kim et al. (10) 
Crash data from Hawaii CODES 
project (1990) 

Structural Equations Models 
Endogeneity of seat belt 
use and crash type 

Structural Equations Model with seat belt use, crash type, and injury severity as endogenous 
variables.  No specific result/discussion was provided on endogeneity. 

9 
Lee and  Abdel-Aty 
(12) 

5-year crash records of Interstate-

4 freeway in Orlando, Florida 

(1999–2003) 

Bivariate ordered probit models 
Endogeneity of 
passenger characteristics 

Jointly modeled passenger characteristics (presence, number, and age of passengers) and crash 
characteristics (citation, crash type, and injury severity) to capture the endogeneity of passenger 

characteristics with the crash characteristics (such as injury severity). It was found that drivers 

display safer driving behavior with the presence of passenger(s), but younger drivers with 
younger passengers may be more crash prone. 

10 
Kim and 

Washington (13) 

Intersections dataset of 38 

counties within the state of 
Georgia 

Joint negative binomial model 

for angle crashes and  logit 
model for left turn lanes 

Endogeneity of left turn 

lane presence in angle 
crash occurrence models 

Installation of left turn lanes at intersection appears to contribute to crashes when endogeneity is 

not considered. Recognizing endogeneity results in a negative effect of left turn lanes on 
occurrence of angle crashes, which is intuitive and concurrent with engineering judgment. 

11 
Gaudry and Vernier     
( 28) 

Three different data bases 

(accident, road and speed ) were 

combined 

Logit Model and Linear 
regression model 

Endogeneity of speed 
Endogeneity between speed and safety (crash frequency and severity) was considered by three 
simultaneous equations. 
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Table 1 (Continued.) A Summary of Traffic Safety Literature Addressing Endogeneity 

 

 

 

 

 

 

No. Paper Data Used Model Structure Used Type  of Endogeneity Research Method and Findings 

12 Hutchinson (14) 
British road accidents data 

(1969-72) 

Bivariate normal distributed 
model of injury severities of 

two drivers in a two-vehicle 

crash 

Simultaneity (common 
unobserved factors 

influencing injuries of 

different individuals) 

Developed a bivariate ordered probit type model of injury severity of the two drivers involved in 

a two-vehicle crash. Results indicate that unobserved factors common to both drivers (assumed 
to be the relative speed in this case) play an important role in determining injury severity levels. 

13 Hutchinson (15) 
British road accidents data 

(1969-72) 

Bivariate normal distributed 
model  of driver’s and front 

passenger’s injury severity 

Simultaneity (common 

unobserved factors 

influencing injuries of 
different individuals) 

Research method same as above. Significant positive correlation was found between the injury 
severities of the two occupants in a vehicle. The correlation was interpreted a largely due to the 

speed of the crash. 

14 Ouyang et al.(16) 
Washington state accident 

records database (1990-96) 

Simultaneous binary logit 

model 

Simultaneity (common 

unobserved factors 

influencing injuries of 
different individuals) 

Jointly modeled the most severe injury in each vehicle for car-truck collisions. Results show 

significant positive correlation between the two injury severity propensities, and that considering 

jointness ensures more efficient and less biased estimates. 

15 
Yamamoto and 
Shankar (17) 

Washington state accident 
records database (1990-96) 

Bivariate ordered-response 
probit model 

Simultaneity (common 

unobserved factors 
influencing injuries of 

different individuals) 

Jointly modeled the injury severity of the driver and that of the most severely injured passenger 

in a single vehicle accident. It was found that the error term of the driver’s injury severity 

propensity is positively correlated with that of the most severely injured passenger. 

16 
Jones and Jørgensen 
(18) 

Norwegian road accident police 
records (1985-96) 

Multilevel logistic regression  

Common unobserved 

factors at accident level 
and accident location 

level 

Three-level (crash victim, crash, and crash location levels) regression models were estimated to 

disentangle the unobserved factors at the individual, crash, and crash location levels. Results 
signify the presence of intra-unit correlations in the dataset at both the crash and crash location 

(municipality, in this case) levels 

17 
Lenguerrand et al. 
(19) 

French road crash data  
(1996-2000) 

Multilevel logistic, Generalized 

Estimating Equations, and 
simple logistic regression 

models were compared 

Common unobserved 

factors at vehicle level 

and accident level 

Three-level (crash victim, vehicle, and crash levels) regression models were estimated using 

multi-level and generalized estimating equations approaches. Results indicate non-negligible 
correlations at crash level, at the same time indicated a need for large datasets and great care to 

estimate multilevel models 

18 Kim et al. (20) 
Crash data for 91 two-lane rural 
intersections in the state of 

Georgia, U.S. (1996–1997) 

Multilevel binomial logistic 

models of crash type 

Common unobserved 
factors at the intersection 

level 

Two-level (crash level and intersection level) binary logistic models of crash type (angle, rear-
end, sideswipe, etc.). Results indicate a significant presence of intersection-level unobserved 

factors affecting the crash type outcomes 

19 Helai et al. (21) 
Database of crashes at urban 

intersections in Singapore 
Multi-level logistic regression  

Correlation between the 

individuals involved in 
same crash 

Two-level (individual level and crash level) binary logistic models were estimated. The results 
show that 28.9% of unexplained variation in severity level results due to the between-crash 

variance (i.e., crash-level unobserved factors). Significant correlation was found between the 

accident severities of the individuals involved in the same crash  



Table 2: Injury Severity Models for the Two Drivers Involved in Two-Vehicle Crashes: parameter 

Estimates and Marginal Effects 

Variables 
Descriptive 

statistics 

Parameter Estimates (t-stats) Marginal Effects 

Independent 

Model 

(ORL) 

Copula-based  

Joint Model 

(ORL-ORL) 

Independent 

Model 

(ORL) 

Copula-based 

Joint Model 

(ORL-ORL) 

Driver Characteristics 

Gender - Female  

Age ( > 64 years is base ) 

     < 25 years 

     25 -64 years                             

Alcohol or drug use 

     Driver 

     Driver of partner vehicle  

Use of seat belts   

 

46.60% 

 

27.00% 

63.90% 

 

1.90% 

1.90% 

97.40% 

 

0.55(8.72) 

 

-0.58(-5.22) 

-0.27(-2.75) 

 

0.82(3.65) 

0.66(3.10) 

-1.65(-9.39) 

 

0.53(9.05) 

 

-0.59(-5.74) 

-0.27(-2.88) 

 

0.83(3.82) 

0.63(3.07) 

-1.47(-8.60) 

 

54.26 

 

-51.12 

-28.71 

 

124.52 

91.35 

-389.12 

 

53.01 

 

-52.43 

-28.06 

 

125.61 

86.42 

-312.89 

Roadway Characteristics  

Surface condition (dry/wet is base) 

     Snow, ice 

Profile ( level is base) 

     Grade  

Speed limit (< 26 mph is base ) 

     Medium (26-65 mph) 

     High ( > 65 mph ) 

 

 

  3.30% 

 

18.20% 

 

85.30% 

  2.00% 

 

 

-0.25(-1.32) 

 

-0.16(-1.95) 

 

0.60(6.19) 

0.41(1.52) 

 

 

-0.28(-1.35) 

 

-0.16(-1.83) 

 

0.51(5.25) 

0.32(1.12) 

 

 

-22.11 

 

-15.18 

 

49.28 

50.00 

 

 

-24.57 

 

-15.12 

 

43.22 

37.27 

Environmental Factors 

Lighting condition (daylight is base) 

     Dark  

Land use   

     Population  > 100000  

 

 

5.30% 

 

40.40% 

 

 

0.23(1.75) 

 

0.31(4.51) 

 

 

0.18(1.21) 

 

0.29(3.97) 

 

 

25.74 

 

28.59 

 

 

19.56 

 

27.42 

Crash Characteristics 

Manner of collision (Rear end & other collision base) 

     Head on 

     Angle 

     Sideswipe collision  

Vehicle role (Striking other vehicle is base ) 

     Struck  by other  vehicle 

Struck by and strikes other vehicle 

 

 

  6.20% 

46.40% 

7.60% 

 

44.40% 

2.30% 

 

 

1.87(14.55) 

0.58(8.92) 

-0.90(-6.09) 

 

0.54(8.46) 

1.67(8.04) 

 

 

1.73(12.06) 

0.51(7.20) 

-0.91(-5.73) 

 

0.50(9.64) 

1.40(6.77) 

 

 

487.48 

61.09 

-62.01 

 

55.42 

409.38 

 

 

417.18 

53.24 

-62.65 

 

51.55 

296.19 

Vehicle Characteristics 

Body type (Sedan is base)     

     Pickup truck   

     Utility vehicle  

Body type of the Partner  vehicle 

     Non-sedan (Pickup/Utility vehicle/Minivan) 

Age of vehicle  

     > 10 years 

 

                 

15.80% 

18.90% 

 

42.30% 

 

26.10% 

 

                 

-0.48 (-4.9) 

-0.19 (-2.4) 

 

0.18(3.1) 

 

0.24 (3.4) 

 

 

-0.49(-5.34) 

-0.19(-2.51) 

 

0.20(3.41) 

 

0.22(3.52) 

 

 

-40.32 

-18.10 

 

18.79 

 

25.79 

 

 

-41.26 

-17.63 

 

19.70 

 

23.46 

Threshold Parameters 

Threshold 1 

Threshold 2 

Threshold 3 

Threshold 4 

 

- 

- 

- 

- 

 

1.20(5.26) 

2.49(10.78) 

3.87(16.00) 

6.86(15.32) 

 

1.23(5.53) 

2.51(11.14) 

3.87(16.30) 

6.76(15.65) 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

Copula Dependency Parameter (θ) - - 1.31(11.04) - - 

Log Likelihood at convergence - -4923.45 -4747.31 - - 
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Table 3. Joint MNL-ORL Model of Collision Type and Injury Severity: Parameter Estimates 

 

Variables 

Collision Type (MNL) Model Component Injury Severity (ORL) Model Component 

Head on Angle Rear end Sideswipe Others Head on  Angle  Rear end  Sideswipe Others 

Copula dependency type      Frank Frank None None None 

Copula dependency parameter (θ) - - - - - 3.03(5.1) 1.29(3.1) - - - 

Constant 

Threshold  (1) 

Threshold  (2) 

Threshold  (3) 

Threshold  (4) 

-1.59(-13.1) 

- 

- 

- 

- 

-0.23(-3.5) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

-1.07(-11.8) 

- 

- 

- 

- 

-3.04(-14.1) 

- 

- 

- 

- 

- 

-1.49(-5.8) 

-0.64(-2.5) 

0.37(1.6) 

2.38(6.5) 

- 

0.37(1.6) 

1.52(6.4) 

2.92(11.6) 

6.01(10.1) 

- 

0.53(2.3) 

1.82(7.5) 

2.92(11.6) 

6.76(6.4) 

 

- 

2.05(7.9) 

3.19(10.1) 

4.44( 9.9) 

6.76(6.4) 

 

- 

1.52(6.4) 

2.38(6.5) 

4.44( 9.9) 

6.76(6.4) 

 

Driver Characteristics 

Gender  

     Female  

Age ( > 64 years is base ) 

< 25 years 

     25 -64 years  

Alcohol or drug use 

     Driver 

     Driver of partner vehicle  

Use of seat belts   

 

 

- 

 

- 

- 

 

0.75(2.8) 

- 

- 

 

 

- 

 

- 

- 

 

- 

- 

- 

 

 

- 

 

- 

- 

 

- 

- 

- 

 

 

- 

 

- 

- 

 

- 

- 

- 

 

 

- 

 

- 

- 

 

- 

- 

- 

 

 

0.49(8.5) 

 

-0.51(-4.9) 

-0.24(-2.6) 

 

0.75(3.6) 

0.62(3.2) 

-1.50(-8.9) 

 

 

0.49(8.5) 

 

-0.51(-4.9) 

-0.24(-2.6) 

 

0.75(3.6) 

0.62(3.2) 

-1.50(-8.9) 

 

 

0.49(8.5) 

 

-0.51(-4.9) 

-0.24(-2.6) 

 

0.75(3.6) 

0.62(3.2) 

-1.50(-8.9) 

 

 

0.49(8.5) 

 

-0.51(-4.9) 

-0.24(-2.6) 

 

0.75(3.6) 

0.62(3.2) 

-1.50(-8.9) 

 

 

0.49(8.5) 

 

-0.51(-4.9) 

-0.24(-2.6) 

 

0.75(3.6) 

0.62(3.2) 

-1.50(-8.9) 

Roadway Characteristics  

Surface condition (dry / wet is base)     

     Snow, ice 

Profile ( level is base) 

     Grade  

Alignment (straight is  base) 

     Curve   

Speed limit (< 26 mph is base ) 

     Medium (26-65 mph) 

     High ( > 65 mph ) 

Absence of median  

Number of lanes - 3or more  

 

 

0.77(2.2) 

 

- 

 

0.35(2.2) 

 

- 

- 

1.20(7.6) 

- 

 

 

- 

 

- 

 

-0.93(-8.9) 

 

- 

- 

0.56(10.8) 

0.15(3.2) 

 

 

0.58(2.9) 

 

- 

 

- 

 

- 

- 

- 

- 

 

 

0.60(2.1) 

 

- 

 

- 

 

- 

- 

- 

0.24(3.4) 

 

 

- 

 

- 

 

- 

 

- 

- 

- 

- 

 

 

- 

 

-0.15(-2.1) 

 

- 

 

0.94(3.9) 

0.36(1.5) 

- 

- 

 

 

-0.49(-1.7) 

 

-0.15(-2.1) 

 

- 

 

0.54(4.9) 

0.36(1.5) 

- 

- 

 

 

-0.28(-1.1) 

 

-0.15(-2.1) 

 

- 

 

0.44(3.3) 

0.36(1.5) 

- 

- 

 

 

- 

 

-0.15(-2.1) 

 

- 

 

0.44(3.3) 

0.36(1.5) 

- 

- 

 

 

- 

 

-0.15(-2.1) 

 

- 

 

0.44(3.3) 

0.36(1.5) 

- 

- 
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Table 3 (Continued.) Joint MNL-ORL Model of Collision Type and Injury Severity: Parameter Estimates 

 

Variables 

Collision Type (MNL) Model Component Injury Severity (ORL) Model Component 

Head on Angle Rear end Sideswipe Others Head on Angle Rear end Sideswipe Others 

  Environmental Factors 

  Lighting condition  

      Daylight  

      Dark  

  Land use   

      Population  > 100000  

 

 

- 

0.54(4.2) 

 

- 

 

 

- 

0.12(2.1) 

 

0.09(1.9) 

 

 

- 

- 

 

- 

 

 

- 

0.19(2.2) 

 

0.10(1.3) 

 

 

- 

0.49(2.0) 

 

0.65(2.5) 

 

 

- 

0.24(1.4) 

 

0.27(4.3) 

 

 

- 

0.24(1.4) 

 

0.27(4.3) 

 

 

- 

- 

 

0.27(4.3) 

 

 

- 

0.24(1.4) 

 

0.27(4.3) 

 

 

- 

0.24(1.4) 

 

0.27(4.3) 

  Crash Characteristics 

Vehicle role (Striking is base ) 

      Struck  

      Struck by and  strikes    

  Accident at intersection  

 

 

- 

- 

- 

 

 

- 

- 

1.08(15.9) 

 

 

- 

- 

0.58(8.2) 

 

 

- 

- 

- 

 

 

- 

- 

- 

 

 

0.50(8.6) 

1.63(8.2) 

- 

 

 

0.50(8.6) 

1.63(8.2) 

- 

 

 

0.50(8.6) 

1.63(8.2) 

- 

 

 

0.50(8.6) 

1.63(8.2) 

- 

 

 

0.50(8.6) 

1.63(8.2) 

- 

  Traffic Control Device  

  Stop sign  

      Stop sign not at intersection  

  Yield sign  

  Traffic control  signal  

 

- 

- 

- 

- 

 

0.98(12.6) 

1.39(5.3) 

1.06(2.9) 

- 

 

- 

- 

2.12(6.6) 

0.31(5.2) 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

  Vehicle Characteristics 

  Body type (Sedan is base) 

      Pickup truck 

      Utility vehicle 

  Body type of the Partner vehicle 

      Non-sedan (Pickup/Utility vehicle) 

  Age of vehicle 

      > 10 years 

 

 

- 

- 

 

- 

 

- 

 

 

 

- 

- 

 

- 

 

- 

 

 

 

 

 

- 

- 

 

- 

 

- 

 

 

 

 

 

- 

- 

 

- 

 

- 

 

 

 

 

 

- 

- 

 

- 

 

- 

 

 

 

 

-0.84(-2.5) 

- 

 

0.26(3.3) 

 

- 

 

 

 

 

-0.57(-4.0) 

-0.20(-1.7) 

 

0.26(3.3) 

 

0.24(3.5) 

 

 

 

 

-0.33(-2.7) 

-0.32(-3.1) 

 

- 

 

0.24(3.5) 

 

 

 

 

- 

- 

 

- 

 

- 

 

 

- 

- 

 

- 

 

- 
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               Table 4. Marginal Effects for Fatal Injury Severity from Independent and Joint Collision Type and Injury Severity Model Systems 

 

 

 

 
Variables 

Marginal Effects from Independent Model System Marginal Effects from Joint Model System 

Head on Angle Rear end Side- swipe Others Head on Angle Rear end Side- swipe Others 

Driver Characteristics 

Gender  

     Female  

Age ( > 64 years is base ) 

     < 25 years 

     25 -64 years  

Alcohol or drug use 

     Driver 

     Driver of partner vehicle  

Use of seat belts   

 

 

52.36 

 

-50.80 

-27.53 

 

109.36 

89.22 

-327.04 

 

 

52.88 

 

-51.54 

-28.42 

 

119.32 

95.57 

-379.94 

 

 

53.69 

 

-50.40 

-29.06 

 

119.51 

95.47 

-390.00 

 

 

53.16 

 

-50.79 

-28.92 

 

120.06 

95.22 

-387.73 

 

 

60.62 

 

-48.57 

-29.51 

 

112.00 

93.58 

-406.32 

 

 

45.82 

 

-43.75 

-22.78 

 

93.16 

73.38 

-249.96 

 

 

48.13 

 

-46.12 

-24.71 

 

108.71 

83.96 

-323.42 

 

 

48.94 

 

-45.23 

-25.23 

 

108.97 

84.01 

-330.99 

 

 

48.51 

 

-45.55 

-25.09 

 

109.36 

83.77 

-329.71 

 

 

54.52 

 

-43.78 

-25.55 

 

102.66 

82.41 

-342.19 

Roadway Characteristics  

Surface condition (dry / wet is base) 

     Snow, ice 

Profile ( level is base) 

     Grade  

Speed limit (< 26 mph is base ) 

     Medium (26-65 mph) 

     High ( > 65 mph ) 

 

 

- 

 

-16.15 

 

28.51 

34.53 

 

 

-38.44 

 

-16.44 

 

59.04 

36.00 

 

 

-33.03 

 

-16.61 

 

33.41 

35.86 

 

 

- 

 

-16.48 

 

33.23 

35.79 

 

 

- 

 

-16.74 

 

33.46 

35.24 

 

 

- 

 

-13.40 

 

69.11 

38.49 

 

 

-39.44 

 

-14.26 

 

46.04 

42.65 

 

 

-24.52 

 

-14.39 

 

37.42 

42.48 

 

 

- 

 

-14.29 

 

37.22 

42.37 

 

 

- 

 

-14.49 

 

37.57 

41.63 

Environmental Factors 
Lighting condition  

    Dark  

Land use   

     Population  > 100000  

 

 

33.26 

 

27.81 

 

 

35.21 

 

28.17 

 

 

- 

 

28.48 

 

 

35.10 

 

28.16 

 

 

33.52 

 

27.34 

 

 

24.26 

 

23.35 

 

 

26.84 

 

24.73 

 

 

- 

 

24.95 

 

 

26.78 

 

24.70 

 

 

25.87 

 

24.08 

Crash Characteristics 

Vehicle role (Striking is base ) 

      Struck by other vehicle 

 Struck by and  strikes other  vehicle   

 

 

68.60 

392.26 

 

 

56.26 

436.94 

 

 

54.56 

460.55 

 

 

58.14 

410.93 

 

 

63.12 

375.64 

 

 

56.48 

299.22 

 

 

50.37 

387.40 

 

 

49.14 

406.13 

 

 

51.79 

367.14 

 

 

55.84 

336.82 

Vehicle Characteristics 

Body type (Sedan is base)     

     Pickup truck   

     Utility vehicle  

Body type of the Partner  vehicle 

      Non-sedan (Pickup , utility) 

Age of vehicle  

     > 10 years 

 

 

-72.26 

- 

 

28.02 

 

- 

 

 

-44.10 

-14..57 

 

29.22 

 

28.37 

 

 

-38.38 

-35.28 

 

- 

 

29.02 

 

 

- 

- 

 

- 

 

- 

 

 

- 

- 

 

- 

 

- 

 

 

-60.11 

- 

 

24.26 

 

- 

 

 

-46.12 

-18.72 

 

26.35 

 

24.34 

 

 

-29.16 

-28.59 

 

- 

 

24.82 

 

 

- 

- 

 

- 

 

- 

 

 

- 

- 

 

- 

 

- 


