
1

D Nagesh Kumar, IISc Stochastic Optimization - II1

Stochastic Optimization - II

Chance Constrained LP
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Introduction

In reservoir planning and operation problem, inflow, Qt, is a random 
variable and is not known with certainty. Its probability distribution, 
however, may be estimated from the historical sequence of inflows. 
Being functions of inflow, Qt, storage St and release Rt are also 
random variables. 
In a constraint containing two random variables, if the probability 
distribution of one is known, the probabilistic behavior of the 
second can be expressed as a measure of chance in terms of the 
probability of the first variable.
If a constraint contains more than two random variables, we get 
into computational complications, and we need to understand the 
specific problem clearly to reformulate the problem, if necessary, 
and avoid those complications.
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Chance Constraint

The constraint, relating the release, Rt, (random) and demand, Dt, (deterministic), is 
expressed as a chance constraint, P [Rt ≥ Dt] ≥ α1;
It means that the probability of release equaling or exceeding the known demand is at 
least equal to α1, which is referred to as the reliability level. The interpretation of this 
chance constraint is simply that the reliability of meeting the demand in period t is at 
least α1.
Similarly, Chance constraints for the maximum release and the maximum and minimum 
storage can be written as 

To use the above chance constraints in an optimization algorithm, we must first 
determine the probability distribution of Rt and St from the known probability distribution 
of Qt. 
However, because St, Qt and Rt are all interdependent through the continuity equation, it 
is, in general, not possible to derive the probability distributions of both St and Rt
simultaneously.
To overcome this difficulty and to enable the use of linear programming in the solution, a 
linear decision rule is appropriately defined.
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Linear Decision Rule (LDR)
The linear decision rule (LDR) relates the release, Rt, from the reservoir as a 
linear function of the water available in period t. The simplest form of such an 
LDR is

Rt = St + Qt - bt
where bt is a deterministic parameter called the decision parameter.

In this LDR, the entire amount, Qt, is taken into account while making the 
release decision. Depending on the proportion of inflow, Qt, used in the 
linear decision rule, a number of such LDRs may be formulated. A general 
form of this LDR may be written as

Rt = St + βt Qt - bt 0 ≤ βt ≤ 1

βt = 0 yields a relatively conservative release policy with release decisions 
related only to the storage, St; βt = 1 yields an optimistic policy where the 
entire amount of water available (St + Qt), is used in the LDR. 
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LDR – Contd.
Consider the LDR 

Rt = St + Qt - bt
Storage continuity equation is

St+1 = St + Qt - Rt
Using above two equations

St+1 = bt
Thus, the random variable, St+1, is set equal to a deterministic parameter bt. 
Thus, the role of the LDR in this case is to treat St, deterministic in formulation. 
A main advantage of doing this is to do away with one of the random 
variables, St, so that the distribution of the other random variable, Rt, may be 
expressed in terms of the known distribution of Qt.
This implies that the variance of Qt is entirely transferred to the variance of Rt.
Including evaporation loss as a storage-dependent term in the storage 
continuity equation, the linear decision rule is written as,
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Deterministic Equivalent of a Chance 
Constraint 

Knowing the probability distribution of inflow, Qt , it is possible to obtain the 
deterministic equivalents of the chance constraints using the LDR, as 
follows: 

The term Dt + bt – bt-1, is deterministic with bt and bt-1 being decision 
variables and Dt being a known quantity for the period t. 

FQt (Dt + bt – bt-1) ≤ 1 - α1
(Dt + bt – bt-1) ≤ FQt

-1 (1 - α1)
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Deterministic Equivalent of a Chance 
Constraint – Contd.

(Dt + bt – bt-1) ≤ FQt
-1 (1 - α1)

FQt
-1 (1 - α1) is the flow, qt, at which the CDF value is (1 - α1) as shown.

Similarly, deterministic equivalent of Chance constraint
P(Rt ≤ Rt

max) ≥ α2 is
Rt

max+ bt – bt-1 ≥ FQt
-1 (α2) 

Since the storage, St, is set equal to the deterministic parameter, bt, the 
chance constraints containing only the storage random variable are written 
as deterministic constraints (without using the probability distribution of 
inflows).
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Chance Constrained LP (CCLP)

Complete deterministic equivalent of the CCLP is 
thus written as 

While solving this model, for a problem with 12 
periods (months) in a year, we also set b0 = b12 for a 
steady state solution. 
Further, depending on the nature of LDR used, the 
decision parameters, bt, may be unrestricted in sign. 
For example, if we use the LDR, Rt = St - bt, the 
decision parameter, bt, may be allowed to take 
negative values.

CCLP can also be applied for Reliability based 
reservoir sizing
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Problem
For the following chance constrained optimization problem, formulate the equivalent 
deterministic optimization problem using the LDR, Rt = St – bt. Storage continuity 
should be maintained. Neglect losses. Following table gives the F-1( ) values for the 
inflows and Rmax and Rmin values for different periods.

subject to
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Solution
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Solution – Contd.

D Nagesh Kumar, IISc Stochastic Optimization - II12

Solution – Contd.
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Thank You


