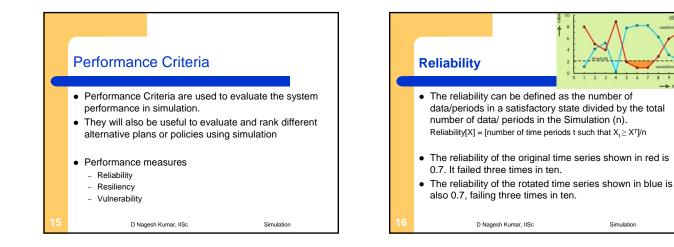
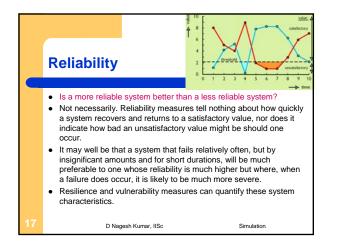

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>


Example									
Simulate the reservoir operation for hydropo generation with the following data Reservoir capacity = 1226 Mm ³ ; minimum power desired in a 73.5 MW. The storage-elevation data for the site is as given in Table an allowance of 47 m (R.L) for the tail race water level. Inflows are in in the Table Rate of evaporation for the 12 months starting June 9, 8, 9, 8, 7, 8, 8, 10, 13, 14, and 11 cms. The plant efficiency is Initial storage = 824.63 Mm ³ . The spill produces additional power									
head equal to maximum h	Elevation (m) (RL) 280.00 295.00 290.00 297.50 300.00 304.25 309.00	Capacity (Mm ⁴) 204.50 248.82 302.82 351.62 398.52 434.77 500.94 582.02	Area (Mm ²) 8.40 10.00 11.60 12.80 14.00 15.00 15.00 15.00 15.14						
D Nagesh	314.50 323.00 329.00 335.75 338.00 Kumar, IISc	686.36 868.85 1013.03 1189.68 1226.00 Si	19.94 23.00 25.06 27.28 28.00 imulation						


Soluti Month Stora M.n	ge Inflow	Evap M.m ³	Releas M.m ³	e Net Head n	Spill 1 M.m ³	End-Stor. M.m ³		• Additional power* MW
JUN 824.0	53 190.76	2.17	86.10	276.57	0.00	927.12	73.5	0.00
JUL 927.	2 433.76	2.22	82.23	289.60	50.43	1226.00	73.5	46.59
AUG 1226.0	00 212.97	2.74	79.57	299.30	130.67	1226.00	73.5	120.71
SEP 1226.0	0 146.89	2.43	79.57	299.30	64.89	1226.00	73.5	59.94
OCT 1226.0	0 209.72	2.13	79.57	299.30	128.03	1226.00	73.5	118.27
NOV 1226.0	0 42.92	2.40	79.91	298.02	0.00	1186.61	73.5	0.00
DEC 1186.6	61 28.02	2.34	80.74	294.95	0.00	1131.56	73.5	0.00
JAN 1131.	6 11.95	2.80	81.89	290.81	0.00	1058.81	73.5	0.00
FEB 1058.8	1 7.07	3.47	83.31	285.86	0.00	979.11	73.5	0.00
MAR 979.1	1 9.25	3.54	84.84	280.71	0.00	899.99	73.5	0.00
APR 899.9	9 9.89	2.62	86.42	275.57	0.00	820.84	73.5	0.00
MAY 820.8	4 65.16	2.52	87.49	272.20	0.00	795.99	73.5	0.00
*Additional p	ower is pro	duced o	only who	en spill o	ccurs.			
D Nagesh Kumar, IISc				Simulation				

