

Simplex Method: Concept in 3D case

- In 3D, a feasible region (i.e., volume) is bounded by several surfaces
- Each vertex (a basic feasible solution) of this volume is connected to the three other adjacent vertices by a straight line to each, being intersection of two surfaces.
- Simplex algorithm helps to move from one vertex to another adjacent vertex which is closest to the optimal solution among all other adjacent vertices.
- Thus, it follows the shortest route to reach the optimal solution from the starting point.

4
D Nagesh Kumar, IISc LP_3: Simplex Method-I

General procedure of simplex method

Simplex method involves following steps

1. General form of given LPP is transformed to its canonical form (refer Lecture notes 1)
2. Find a basic feasible solution of the LPP (there should exist at least one).
3. Move to an adjacent basic feasible solution which is closest to the optimal solution among all other adjacent vertices.
4. Repeat until optimum solution is achieved

Step three involves 'Simplex Algorithm'

D Nagesh Kumar, IISc
LP 3: Simplex Method-I

$$
\begin{array}{ll}
\text { Maximize } & Z=4 x_{1}-x_{2}+2 x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+2 x_{3} \leq 6 \\
& x_{1}-4 x_{2}+2 x_{3} \leq 0 \\
& 5 x_{1}-2 x_{2}-2 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Simplex Algorithm ... contd.

LPP is transformed to its standard form

Maximize $\quad-4 x_{1}+x_{2}-2 x_{3}+Z=0$
subject to $2 x_{1}+x_{2}+2 x_{3}+x_{4}=6$
$x_{1}-4 x_{2}+2 x_{3}+x_{5}=0$
$5 x_{1}-2 x_{2}-2 x_{3}+x_{6}=4$
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0$
Note that x_{4}, x_{5} and x_{6} are slack variables

Simplex Algorithm ... contd.

Set of equations, including the objective function is transformed to canonical form

$-4 x_{1}+x_{2}-2 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}+Z$	$=0$
$2 x_{1}+x_{2}+2 x_{3}+1 x_{4}+0 x_{5}+0 x_{6}$	$=6$
$x_{1}-4 x_{2}+2 x_{3}+0 x_{4}+1 x_{5}+0 x_{6}$	$=0$
$5 x_{1}-2 x_{2}-2 x_{3}+0 x_{4}+0 x_{5}+1 x_{6}$	$=4$

Basic feasible solution of above canonical form is $x_{4}=6, x_{5}=0, x_{6}=4, x_{1}=x_{2}=x_{3}=0$ and $Z=0$
x_{4}, x_{5}, x_{6} : Basic Variables; x_{1}, x_{2}, x_{3} : Nonbasic Variables
D Nagesh Kumar, IISc

Simplex Algorithm ... contd.

Symbolized form (for ease of discussion)

(Z)	$c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}+c_{5} x_{5}+c_{6} x_{6}+Z=b$	
$\left(x_{4}\right)$	$c_{41} x_{1}+c_{42} x_{2}+c_{43} x_{3}+c_{44} x_{4}+c_{45} x_{5}+c_{46} x_{6}$	$=b_{4}$
$\left(x_{5}\right)$	$c_{51} x_{1}+c_{52} x_{2}+c_{53} x_{3}+c_{54} x_{4}+c_{55} x_{5}+c_{56} x_{6}$	$=b_{5}$
$\left(x_{6}\right)$	$c_{61} x_{1}+c_{62} x_{2}+c_{63} x_{3}+c_{64} x_{4}+c_{65} x_{5}+c_{66} x_{6}$	$=b_{6}$

- The left-most column is known as basis as this is consisting of basic variables
- The coefficients in the first row $\left(\boldsymbol{C}_{1}, \ldots, C_{b}\right.$ are known as cost coefficients.
- Other subscript notations are self explanatory

LP_3: Simplex Method-I

Simplex Algorithm ... contd.

This completes first step of algorithm. After completing each step (iteration) of algorithm, following three points are to be examined:

1. Is there any possibility of further improvement?

Which nonbasic variable is to be entered into the basis?
3. Which basic variable is to be exited from the basis?

Simplex Algorithm ... contd.

Is there any possibility of further improvement?
If any one of the cost coefficients is negative further improvement is possible.
Which nonbasic variable is to be entered?
Entering variable is decided such that the unit change of this variable should have maximum effect on the objective function. Thus the variable having the coefficient which is minimum among all cost coefficients is to be entered, i.e., x_{s} is to be entered if cost coefficient c_{s} is minimum.

Entering variable
c_{1} is minimum (-4), thus, x_{1} is the entering variable for the next step of calculation.
Exiting variable

$\frac{b_{6}}{c_{61}}=\frac{4}{5}=0.8$. As $\frac{b_{5}}{c_{51}}$ is minimum, r is 5 . Thus, x_{5} is to be exited.
$c_{51}(=1)$ is considered as pivotal element and x_{5} is replaced by x_{1} in the basis.
Thus a new canonical form is obtained through pivotal operation, which was explained in first class.
D Nagesh Kumar, IISc LP_3: Simplex Method-I

Simplex Algorithm ... contd.

After the pivotal operation, the canonical form obtained as follows

(Z)	$0 x_{1}-15 x_{2}+6 x_{3}+0 x_{4}+4 x_{5}+0 x_{6}+Z$	$=0$
$\left(x_{4}\right)$	$0 x_{1}+9 x_{2}-2 x_{3}+1 x_{4}-2 x_{5}+0 x_{6}$	$=6$
$\left(x_{1}\right)$	$1 x_{1}-4 x_{2}+2 x_{3}+0 x_{4}+1 x_{5}+0 x_{6}$	$=0$
$\left(x_{6}\right)$	$0 x_{1}+18 x_{2}-12 x_{3}-0 x_{4}-5 x_{5}+1 x_{6}$	$=4$

The basic solution of above canonical form is $x_{1}=0, x_{4}=6, x_{6}=4$, $x_{2}=x_{3}=x_{5}=0$ and $Z=0$.
Note that cost coefficient c_{2} is negative. Thus optimum solution is not yet achieved. Further improvement is possible.

LP_3: Simplex Method-I

| (Z) | $0 x_{1}-15 x_{2}+6 x_{3}+0 x_{4}+4 x_{5}+0 x_{6}+Z$ | $=$ |
| :--- | :--- | :--- | :--- |
| $\left(x_{4}\right)$ | $0 x_{1}+9 x_{2}-2 x_{3}+1 x_{4}-2 x_{5}+0 x_{6}$ | $=$ |
| $\left(x_{1}\right)$ | $1 x_{1}-4 x_{2}+2 x_{3}+0 x_{4}+1 x_{5}+0 x_{6}$ | $=$ |
| $\left(x_{6}\right)$ | $0 x_{1}+18 x_{2}-12 x_{3}-0 x_{4}-5 x_{5}+1 x_{6}$ | $=$ |

Simplex Algorithm ... contd.

Entering variable
c_{2} is minimum (-15), thus, x_{2} is the entering variable for the next step of calculation.
Exiting variable
r may take any value from 4, 1 and 6. However, c_{12} is negative (-4). Thus, r
may be either 4 or 6 . It is found that $\frac{b_{4}}{c_{42}}=\frac{6}{9}=0.667$ and $\frac{b_{6}}{c_{62}}=\frac{4}{18}=0.222$.
As $\frac{b_{6}}{c_{62}}$ is minimum, r is 6 . Thus x_{6} is to be exited. $c_{62}(=18)$ is considered
as pivotal element and x_{6} is to be replaced by x_{2} in the basis.

Simplex Algorithm ... contd.
The canonical form obtained after third iteration
$(Z) \quad 0 x_{1}+0 x_{2}-4 x_{3}+0 x_{4}-\frac{1}{6} x_{5}+\frac{5}{6} x_{6}+Z=\frac{10}{3}$
$\left(x_{4}\right) \quad 0 x_{1}+0 x_{2}+4 x_{3}+1 x_{4}+\frac{1}{2} x_{5}-\frac{1}{2} x_{6} \quad=4$
$\left(x_{1}\right) \quad 1 x_{1}+0 x_{2}-\frac{2}{3} x_{3}+0 x_{4}-\frac{1}{9} x_{5}+\frac{2}{9} x_{6} \quad=\frac{8}{9}$
$\left(x_{2}\right) \quad 0 x_{1}+1 x_{2}-\frac{2}{3} x_{3}+0 x_{4}-\frac{5}{18} x_{5}+\frac{1}{18} x_{6} \quad=\frac{2}{9}$
The basic solution of above canonical form is $x_{1}=8 / 9, x_{2}=2 / 9, x_{4}=4, x_{3}=x_{5}=x_{6}=0$ and $Z=10 / 3$.

18
D Nagesh Kumar, IISc LP_3: Simplex Method-I

Simplex Algorithm ... contd.

Note that all the cost coefficients are nonnegative. Thus the optimum solution is achieved.

Optimum solution is

$$
\begin{aligned}
& Z=\frac{22}{3}=7.333 \\
& x_{1}=\frac{14}{9}=1.556 \\
& x_{2}=\frac{8}{9}=0.889 \\
& x_{3}=1
\end{aligned}
$$

21
D Nagesh Kumar, IISc
LP_3: Simplex Method-I

Simplex Algorithm ... contd.

The canonical form obtained after fourth iteration
(Z) $\quad 0 x_{1}+0 x_{2}+0 x_{3}+1 x_{4}+\frac{1}{3} x_{5}+\frac{1}{3} x_{6}+Z \quad=\frac{22}{3}$
$\left(x_{3}\right) \quad 0 x_{1}+0 x_{2}+1 x_{3}+\frac{1}{4} x_{4}+\frac{1}{8} x_{5}-\frac{1}{8} x_{6} \quad=1$
$\left(x_{1}\right) \quad 1 x_{1}+0 x_{2}+0 x_{3}+\frac{1}{6} x_{4}-\frac{1}{36} x_{5}+\frac{5}{36} x_{6} \quad=\frac{14}{9}$
$\left(x_{2}\right) \quad 0 x_{1}+1 x_{2}+0 x_{3}+\frac{1}{6} x_{4}-\frac{7}{36} x_{5}-\frac{1}{36} x_{6} \quad=\frac{8}{9}$
The basic solution of above canonical form is $x_{1}=14 / 9, x_{2}=8 / 9, x_{3}=1, x_{4}=x_{5}=x_{6}=0$ and $Z=22 / 3$.
D Nagesh Kumar, IISc LP 3: Simplex Method-I

Construction of Simplex Tableau: General notes

Calculations shown till now can be presented in a tabular form, known as simplex tableau

After preparing the canonical form of the given LPP, first simplex tableau is constructed.

After completing each simplex tableau (iteration), few steps (somewhat mechanical and easy to remember) are followed.
Logically, these steps are exactly similar to the procedure described earlier.

Construction of Simplex Tableau: Basic steps

Check for optimum solution:

1. Investigate whether all the elements (coefficients of the variables headed by that column) in the first row (i.e., Z row) are nonnegative or not. If all such coefficients are nonnegative, optimum solution is obtained and no need of further iterations. If any element in this row is negative follow next steps to obtain the simplex tableau for next iteration.

Construction of Simplex Tableau:

 Basic steps
Operations to obtain next simplex tableau:

2. Identify the entering variable (described earlier) and mark that column as Pivotal Column.
3. Identify the exiting variable from the basis as described earlier and mark that row as Pivotal Row.
4. Mark the coefficient at the intersection of Pivotal Row and Pivotal Column as Pivotal Element.

Construction of Simplex Tableau: example

Successive iterations

28
D Nagesh Kumar, IISc LP_3: Simplex Method-I

Final results from Simplex Tableau

All the elements in the first row (i.e., Z row), at iteration 4 , are nonnegative. Thus, optimum solution is achieved.

Optimum solution is
$z=\frac{22}{3}=7.333$
$x_{1}=\frac{14}{9}=1.556$
$x_{2}=\frac{8}{9}=0.889$
$x_{3}=1$

Construction of Simplex Tableau: A note

It can be noted that at any iteration the following two points must be satisfied:

1. All the basic variables (other than Z) have a coefficient of zero in the Z row.
2. Coefficients of basic variables in other rows constitute a unit matrix.
Violation of any of these points at any iteration indicates a wrong calculation. However, reverse is not true.

Thank You

